×

Local perturbations of conservative \(C^{1}\) diffeomorphisms. (English) Zbl 1380.37042

Perturbation techniques for dissipative \(C^1\)-diffeomorphisms have been developed, and a survey is contained in the paper [S. Crovisier, Perturbation de la dynamique de difféomorphismes en topologie \(C^1\). Paris: Société Mathématique de France (SMF) (2013; Zbl 1300.37001)].
As the authors say, the aim of this paper is “to systematically extend the perturbation tools to the conservative settings, trying as much as possible to follow the local approach of [J. Bochi and C. Bonatti, Proc. Lond. Math. Soc. (3) 105, No. 1, 1–48 (2012; Zbl 1268.37027)].” The topics discussed in the paper are:
Franks’ lemma, linearization and preservation of homoclinic connections;
perturbation of the spectrum of periodic orbits: achieving simplicity, realness or equal modulus for the stable and for the unstable eigenvalues;
further perturbations of the tangent dynamics above periodc orbits: making the angle between stable and unstable spaces arbitrarily small;
birth of homoclinic tangencies for a hyperbolic periodic orbit without strong dominated splitting.

MSC:

37C20 Generic properties, structural stability of dynamical systems
37C25 Fixed points and periodic points of dynamical systems; fixed-point index theory; local dynamics
37C29 Homoclinic and heteroclinic orbits for dynamical systems
37J10 Symplectic mappings, fixed points (dynamical systems) (MSC2010)

References:

[1] Abdenur F, Bonatti C and Crovisier S 2011 Nonuniform hyperbolicity for C1-generic diffeomorphisms Isr. J. Math.183 1-60 · Zbl 1246.37040 · doi:10.1007/s11856-011-0041-5
[2] Alishah H and Lopes Dias J 2014 Realization of tangent perturbations in discrete and continuous time conservative systems Discrete Contin. Dyn. Syst.34 5359-74 · Zbl 1331.37074 · doi:10.3934/dcds.2014.34.5359
[3] Arbieto A, Armijo A, Catalan T and Senos L 2013 Symbolic extensions and dominated splittings for generic C1-diffeomorphisms Math. Z.275 1239-54 · Zbl 1311.37018 · doi:10.1007/s00209-013-1180-7
[4] Arnaud M-C 2002 The generic C1 symplectic diffeomorphisms of symplectic 4-dimensional manifolds are hyperbolic, partially hyperbolic, or have a completely elliptic point Ergod. Theor. Dynam. Syst.22 1621-39 · Zbl 1030.37037 · doi:10.1017/S0143385702000706
[5] Arnaud M-C, Bonatti C and Crovisier S 2005 Dynamiques symplectiques génériques Ergod. Theor. Dynam. Syst.25 1401-36 · Zbl 1084.37017 · doi:10.1017/S0143385704000975
[6] Avila A 2010 On the regularization of conservative maps Acta Math.205 5-18 · Zbl 1211.37029 · doi:10.1007/s11511-010-0050-y
[7] Bochi J 2002 Genericity of zero Lyapunov exponents Ergod. Theor. Dynam. Syst.22 1667-96 · Zbl 1023.37006 · doi:10.1017/S0143385702001165
[8] Bochi J and Viana M 2005 The Lyapunov exponents of generic volume preserving and symplectic maps Ann. Math.161 1423-85 · Zbl 1101.37039 · doi:10.4007/annals.2005.161.1423
[9] Bonatti C and Crovisier S 2004 Récurrence et généricité Inventiones Math.158 33-104 · Zbl 1071.37015 · doi:10.1007/s00222-004-0368-1
[10] Bonatti C, Crovisier S, Díaz L and Gourmelon N 2013 Internal perturbations of homoclinic classes: non-domination, cycles, and self-replication Ergod. Theor. Dynam. Syst.33 739-76 · Zbl 1303.37008 · doi:10.1017/S0143385712000028
[11] Bonatti C, Crovisier S and Shinohara K 2013 The C1+α hypothesis in Pesin theory revisited J. Mod. Dyn.7 605-18 · Zbl 1312.37018
[12] Bochi J and Bonatti C 2012 Perturbation of the Lyapunov spectra of periodic orbits Proc. Lond. Math. Soc.105 1-48 · Zbl 1268.37027 · doi:10.1112/plms/pdr048
[13] Bonatti C, Díaz L and Pujals E R 2003 A C1-generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources Ann. Math.158 355-418 · Zbl 1049.37011 · doi:10.4007/annals.2003.158.355
[14] Bonatti C, Díaz L and Viana M 2004 Dynamics Beyond Uniform Hyperbolicity (Berlin: Springer)
[15] Bonatti C, Gourmelon N and Vivier T 2006 Perturbations of the derivative along periodic orbits Ergod. Theor. Dynam. Syst.26 1307-37 · Zbl 1175.37027 · doi:10.1017/S0143385706000253
[16] Buzzi J, Crovisier S and Fisher T 2016 Entropy of C1 diffeomorphisms without a dominated splitting (arXiv:1606.01765)
[17] Catalan T 2012 A C1 generic condition for existence of symbolic extensions of volume preserving diffeomorphisms Nonlinearity25 3505-25 · Zbl 1336.37013 · doi:10.1088/0951-7715/25/12/3505
[18] Catalan T 2016 A link between topological entropy and Lyapunov exponents (arXiv:1601.04025)
[19] Catalan T and Horita V 2013 C1-genericity of symplectic diffeomorphisms and lower bounds for topological entropy (arXiv:1310.5162)
[20] Catalan T and Tahzibi A 2014 A lower bound for topological entropy of generic non-Anosov symplectic diffeomorphisms Ergod. Theor. Dynam. Syst.34 1503-24 · Zbl 1317.37023 · doi:10.1017/etds.2013.12
[21] Crovisier S 2013 Perturbation de la dynamique de difféomorphismes en topologie C1 Astérisque354 · Zbl 1300.37001
[22] Díaz L, Pujals E and Ures R 1999 Partial hyperbolicity and robust transitivity Acta Math.183 1-43 · Zbl 0987.37020 · doi:10.1007/BF02392945
[23] Franks J 1971 Necessary conditions for stability of diffeomorphisms Trans. Am. Math. Soc.158 301-8 · Zbl 0219.58005 · doi:10.1090/S0002-9947-1971-0283812-3
[24] Gourmelon N 2010 Generation of homoclinic tangencies by C1-perturbations Discrete Contin. Dyn. Syst.26 1-42 · Zbl 1178.37025 · doi:10.3934/dcds.2010.26.1
[25] Gourmelon N 2016 A Franks lemma that preserves invariant manifolds Ergod. Theor. Dynam. Syst.36 1167-203 · Zbl 1369.37025 · doi:10.1017/etds.2014.101
[26] Hayashi S 1997 Connecting invariant manifolds and the solution of the C1-stability and Ω-stability conjectures for flows Ann. Math.145 81-137 · Zbl 0871.58067 · doi:10.2307/2951824
[27] Hayashi S 1999 Connecting invariant manifolds and the solution of the C1-stability and Ω-stability conjectures for flows Ann. Math.150 353-6 · Zbl 1157.37317 · doi:10.2307/121106
[28] Horita V and Tahzibi A 2006 Partial hyperbolicity for symplectic diffeomorphisms Ann. Inst. Henri Poincaré. Analyse Non Linéaire23 641-61 · Zbl 1130.37356 · doi:10.1016/j.anihpc.2005.06.002
[29] Kupka I 1963 Contributions à la théorie des champs génériques Contrib. Differ. Equ.2 457-84 · Zbl 0149.41002
[30] Liao S 1980 On the stability conjecture Chin. Ann. Math.1 9-30 · Zbl 0449.58013
[31] Mañé R 1982 An ergodic closing lemma Ann. Math.116 503-40 · Zbl 0511.58029 · doi:10.2307/2007021
[32] McDuff D and Salamon D 1998 Introduction to Symplectic Topology(Oxford Mathematical Monographs) (Oxford: Clarendon) · Zbl 1066.53137
[33] Newhouse S 1977 Quasi-elliptic periodic points in conservative dynamical systems Am. J. Math.99 1061-87 · Zbl 0379.58011 · doi:10.2307/2374000
[34] Pliss V 1972 On a conjecture of Smale Differ. Uravn8 262-8
[35] Poincaré H 1891 Le problème des trois corps Rev. Gén. Sci. Pures Appl.2 1-5 http://henripoincarepapers.univ-lorraine.fr/chp/hp-pdf/hp1891rg.pdf
[36] Potrie R 2010 Generic bi-Lyapunov stable homoclinic classes Nonlinearity23 1631-49 · Zbl 1198.37027 · doi:10.1088/0951-7715/23/7/006
[37] Pugh C 1967 The closing lemma Am. J. Math.89 956-1009 · Zbl 0167.21803 · doi:10.2307/2373413
[38] Pugh C and Robinson C 1983 The C1 closing lemma, including Hamiltonians Ergod. Theor. Dynam. Syst.3 261-313 · Zbl 0548.58012 · doi:10.1017/S0143385700001978
[39] Pujals E and Sambarino M 2000 Homoclinic tangencies and hyperbolicity for surface diffeomorphisms Ann. Math.151 961-1023 · Zbl 0959.37040 · doi:10.2307/121127
[40] Robinson C 1968 A global approximation theorem for Hamiltonian systems Proc. AMS Summer Inst. Glob. Anal.14 233-43 · Zbl 0217.20703
[41] Robinson C 1970 Generic properties of conservative systems I and II Am. J. Math.92 562-603 and 897-906 · Zbl 0212.56502 · doi:10.2307/2373361
[42] Saghin R and Xia Z 2006 Partial hyperbolicity or dense elliptic periodic points for C1-generic symplectic diffeomorphisms Trans. Am. Math. Soc.358 5119-38 · Zbl 1210.37014 · doi:10.1090/S0002-9947-06-04171-7
[43] Smale S 1963 Stable manifolds for differential equations and diffeomorphisms Ann. Scuola Norm. Super. Pisa17 97-116 · Zbl 0113.29702
[44] Teixeira P 2016 On the conservative pasting lemma (arXiv:1611.01694) · Zbl 1441.37028
[45] Wen L 2002 Homoclinic tangencies and dominated splittings Nonlinearity15 1445-69 · Zbl 1011.37011 · doi:10.1088/0951-7715/15/5/306
[46] Zehnder E 1976 Note on smoothing symplectic and volume-preserving diffeomorphisms Geometry and Topology(Lecture Notes in Mathematics vol 597) (Berlin: Springer) pp 828-54 · Zbl 0363.58004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.