×

Diffusion on Delone sets. (English) Zbl 1380.37034

Graphs associated to Delone sets or tilings appear in many ways in the study of Schrödinger operators for quasicrystals and (dis)ordered structures. Here, the authors look at operators of Laplace type from a diffusion point of view. A systematic framework via neighbour relations is presented. It covers both metric and discrete graphs. The authors then establish Gaussian heat kernel estimates for both classes, thus unifying and extending existing results in this setting.

MSC:

37B50 Multi-dimensional shifts of finite type, tiling dynamics (MSC2010)
05B45 Combinatorial aspects of tessellation and tiling problems
52C23 Quasicrystals and aperiodic tilings in discrete geometry

References:

[1] Auscher, P., Coulhon, T., Grigor’yan, A. (eds): Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces, Contemp. Math. 338, Amer. Math. Soc., Providence (2003) · Zbl 1029.00030
[2] Baake, M., Lenz, D.: Spectral notions of aperiodic order. Discret. Contin. Dyn. Syst. S 10, 161-190 (2017) · Zbl 1373.37031 · doi:10.3934/dcdss.2017009
[3] Baake, M., Grimm, U.: Aperiodic Order, A Mathematical Invitation, vol. 1. Cambridge University Press, Cambridge (2013) · Zbl 1295.37001 · doi:10.1017/CBO9781139025256
[4] Barlow, M., Bass, R.F., Kumagai, T.: Stability of parabolic Harnack inequalities on metric measure spaces. J. Math. Soc. Japan 58, 485-519 (2006) · Zbl 1102.60064 · doi:10.2969/jmsj/1149166785
[5] Barlow, M.: Random Walks and Heat Kernels on Graphs. Cambridge University Press, Cambridge (2017) · Zbl 1365.05002 · doi:10.1017/9781107415690
[6] Berkolaiko, G., Carlson, R., Fulling, S.A., Kuchment, P. (eds.): Quantum Graphs and Their Applications. Contemporary Mathematics 415, American Mathematical Society, Provicence (2006) · Zbl 1104.81052
[7] Damanik, D., Embree, M., Gorodetski, A.: Spectral properties of Schrödinger operators arising in the study of quasicrystals. Math. Aperiodic Order 19, 307-370 (2015) · Zbl 1378.81031 · doi:10.1007/978-3-0348-0903-0_9
[8] Damanik, D., Gorodetski, A., Solomyak, B.: Absolutely continuous convolutions of singular measures and an application to the square Fibonacci Hamiltonian. Duke Math. J. 164, 1603-1640 (2015) · Zbl 1358.37117 · doi:10.1215/00127094-3119739
[9] Delmotte, T.: Parabolic Harnack inequality and estimates of Markov chains on graphs. Rev. Mat. Iberoam. 15, 181-232 (1999) · Zbl 0922.60060 · doi:10.4171/RMI/254
[10] Exner, P., Keating, J.P., Kuchment, P., Sunada, T., Teplyaev, A. (eds.): Analysis on graphs and its applications. In: Proceedings of Symposia in Pure Mathematics 77, Amer. Math. Soc., Providence (2008) · Zbl 1143.05002
[11] Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet forms and symmetric Markov processes. Second Revised and Extended Edition. de Gruyter Studies in Mathematics 19. Walter de Gruyter & Co., Berlin (2011) · Zbl 1227.31001
[12] Gähler, F., Stampfli, P.: The dualisation method revisited: dualisation of product Laguerre complexes as a unifying framework. Int. J. Mod. Phys. B 7, 1333-1349 (1933) · Zbl 0798.52022 · doi:10.1142/S0217979293002353
[13] Grigor’yan, A.: The heat equation on noncompact Riemannian manifolds, (Russian) Mat. Sb. 182: 55-87; translation in Math. USSR-Sb. 72(1992), 47-77 (1991) · Zbl 0776.58035
[14] Grünbaum, B., Shephard, G.C.: Tilings and Patterns. W. H. Freeman and Company, New York (1987) · Zbl 0601.05001
[15] Haeseler, S.: Heat kernel estimates and related inequalities on metric graphs, http://arxiv.org/abs/1101.3010
[16] Ishimasa, T., Nissen, H.U., Fukano, Y.: New ordered state between crystalline and amorphous in Ni-Cr particles. Phys. Rev. Lett. 55, 511-513 (1985) · doi:10.1103/PhysRevLett.55.511
[17] Kanai, M.: Rough isometries, and combinatorial approximations of geometries of noncompact Riemannian manifolds. J. Math. Soc. Japan 37, 391-413 (1985) · Zbl 0554.53030 · doi:10.2969/jmsj/03730391
[18] Kanai, M.: Analytic inequalities, and rough isometries between noncompact Riemannian manifolds, Curvature and topology of Riemannian manifolds (Katata, 1985). Lecture Notes in Math, vol. 1201, pp. 122-137. Springer, Berlin (1986) · Zbl 1048.37014
[19] Kellendonk, J., Lenz, D., Savinien, J. (eds): Mathematics of aperiodic order, Prog. Math. 309, Birkhäuser, Basel (2015) · Zbl 1338.37005
[20] Kellendonk, J., Putnam, I.: Tilings, \[C^*C\]∗-algebras, and \[KK\]-theory, Directions in mathematical quasicrystals, CRM Monogr. Ser.13. In: Baake, M., Moody, R.V. (eds.), pp. 177-206, American Mathematical Society Providence (2000) · Zbl 0972.52015
[21] Keller, M., Lenz, D., Vogt, H., Wojciechowski, R.: Note on basic features of large time behaviour of heat kernels. J. Reine Angew. Math. 708, 73-95 (2015) · Zbl 1369.58017
[22] Lagarias, J.C.: Geometric models for quasicrystals I. Delone sets of finite type. Discrete Comput. Geom. 21(2), 161-191 (1999) · Zbl 0924.68190 · doi:10.1007/PL00009413
[23] Lagarias, J., Pleasants, P.A.B.: Repetitive Delone sets and quasicrystals. Ergod. Theory Dyn. Syst. 23, 831-867 (2003) · Zbl 1062.52021 · doi:10.1017/S0143385702001566
[24] Lenz, D., Stollmann, P.: Generic sets in spaces of measures and generic singular continuous spectrum for Delone Hamiltonians. Duke Math. J. 131, 203-217 (2006) · Zbl 1103.81017 · doi:10.1215/S0012-7094-06-13121-6
[25] Moody, R.V. (ed.): The mathematics of long-range aperiodic order, NATO ASI C 489, 9-44 (1997) · Zbl 1205.82084
[26] Pang, M.H.H.: The heat kernel of the Laplacian defined on a uniform grid. Semigroup Forum 78, 238-252 (2009) · Zbl 1171.35028 · doi:10.1007/s00233-008-9082-4
[27] Patera, J. (ed.): Quasicrystals and Discrete Geometry, Fields Institute Monographs 10. American Mathematical Society, Providence (1998)
[28] Priebe, N.M.: Towards a characterization of self-similar tilings in terms of derived Voronoi tesselations. Geom. Dedic. 79, 239-265 (2000) · Zbl 1048.37014 · doi:10.1023/A:1005191014127
[29] Saloff-Coste, L.: A note on Poincar \[\acute{{\rm e}}\] e´, Sobolev, and Harnack inequalities. Int. Math. Res. Not. 1992, 27-38 (1992) · Zbl 0769.58054 · doi:10.1155/S1073792892000047
[30] Schlottmann, M.: Periodic and quasi-periodic Laguerre tilings. Int. J. Mod. Phys. B 7, 1351-1363 (1933) · Zbl 0798.52030 · doi:10.1142/S0217979293002365
[31] Senechal, M.: Quasicrystals and Geometry. Cambridge University Press, Cambridge (1995) · Zbl 0828.52007
[32] Shechtman, D., Blech, I., Cahn, J.W.: Metallic phase with long-range orientational order and no translation symmetry. Phys. Rev. Lett. 53, 183-185 (1984) · doi:10.1103/PhysRevLett.53.1951
[33] Sturm, K.T.: Analysis on local Dirichlet spaces. III. The parabolic Harnack inequality (9). J. Math. Pures Appl. 75(3), 273-297 (1996) · Zbl 0854.35016
[34] Telcs, A.: Diffusive limits on the Penrose tiling. J. Stat. Phys. 141, 661-668 (2010) · Zbl 1205.82084 · doi:10.1007/s10955-010-0072-z
[35] Trebin, H.-R. (ed.): Quasicrystals—Structure and Physical Properties. Wiley, Weinheim (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.