×

Rogue waves for a generalized nonlinear Schrödinger equation with distributed coefficients in a monomode optical fiber. (English) Zbl 1380.35145

Summary: Investigated in this paper is the generalized nonlinear Schrödinger equation with distributed coefficients, which describes the amplification or absorption of pulses propagating in a monomode optical fiber with distributed group-velocity dispersion and self-focusing Kerr nonlinearity. By virtue of the Kadomtsev-Petviashvili hierarchy reduction, we obtain the rogue waves based on rogue-wave solutions in terms of the Gramian under certain constraint. We study the effects of group-velocity dispersion, nonlinearity and amplification/absorption coefficients on the rogue waves with the help of figures. Amplitudes of the rogue waves are independent with the group-velocity dispersion and nonlinearity coefficients. The first-order rogue wave with an eye-shaped distribution density and the second-order rogue waves with the highest-peak amplitude and with the triple-peak structure are presented. Both the intermingled or separated composite rogue waves are derived. Periodic rogue waves are obtained and period of the periodic rogue wave increases with the period of the group-velocity dispersion. Furthermore, nonlinear tunneling of the rogue waves is observed: rogue waves get amplified when they reach to the dispersion barriers and recover their original shapes after passing through the barriers, while amplitudes of the rogue waves decrease inside the dispersion wells. Amplification/absorption coefficient influence the background and amplitude of the rogue wave, and three types of the backgrounds are discussed due to different amplification/absorption coefficients.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
Full Text: DOI

References:

[1] Müller, P.; Garrett, C.; Osborne, A., Rogue waves, Oceanography, 18, 66 (2005)
[2] Pelinovsky, E.; Kharif, C., Extreme Ocean Waves (2008), Springer: Springer Berlin
[3] Akhmediev, N.; Ankiewicz, A.; Taki, M., Waves that appear from nowhere and disappear without a trace, Phys Lett A, 373, 675 (2009) · Zbl 1227.76010
[4] Kharif, C.; Pelinovsky, E.; Slunyaev, A., Rogue waves in the Ocean (2009), Springer-Verlag: Springer-Verlag Berlin · Zbl 1230.86001
[5] Kundu, A.; Mukherjee, A.; Naskar, T., Modelling rogue waves through exact dynamical lump soliton controlled by ocean currents, Proc R Soc A, 470, 2164 (2014) · Zbl 1371.86010
[6] Stenflo, L.; Marklund, M., Rogue waves in the atmosphere, J Plasma Phys, 76, 293 (2010)
[7] Moslem, W. M., Langmuir rogue waves in electron-positron plasmas, Phys Plasmas, 18, 032301 (2011)
[8] Bludov, Y. V.; Konotop, V. V.; Akhmediev, N., Matter rogue waves, Phys Rev A, 80, 033610 (2009)
[9] Solli, D. R.; Ropers, C.; Koonath, P.; Jalali, B., Optical rogue waves, Nature, 450, 1054 (2007)
[10] Erkintalo, M.; Genty, G.; Dudley, J. M., Rogue-wave-like characteristics in femtosecond supercontinuum generation, Opt Lett, 34, 2468 (2009)
[11] Ankiewicz, A.; Clarkson, P. A.; Akhmediev, N., Rogue waves, rational solutions, the patterns of their zeros and integral relations, J Phys A, 43, 122002 (2010) · Zbl 1189.35300
[12] Chabchoub, A.; Hoffmann, N.; Onorato, M.; Akhmediev, N., Super rogue waves: observation of a higher-order breather in water waves, Phys Rev X, 2, 011015 (2012)
[13] Clamond, D.; Francius, M.; Grue, J.; Kharif, C., Long time interaction of envelope solitons and freak wave formations, Eur J Mech B Fluids, 25, 536 (2006) · Zbl 1331.76027
[14] Walczak, P.; Randoux, S.; Suret, P., Optical rogue waves in integrable turbulence, Phys Rev Lett, 114, 143903 (2015)
[15] Peregrine, D. H., Water waves, nonlinear Schrödinger equations and their solutions, J Aust Math Soc Series B, 25, 16 (1983) · Zbl 0526.76018
[16] Kasparian, J.; Béjot, P.; Wolf, J. P.; Dudley, J. M., Optical rogue wave statistics in laser filamentation, Opt Exp, 17, 12070 (2009)
[17] Kibler, B.; Fatome, J.; Finot, C.; Millot, G.; Dias, F.; Genty, G., The peregrine soliton in nonlinear fibre optics, Nat Phys, 6, 790 (2010)
[18] Ohta, Y.; Yang, J., General high-order rogue waves and their dynamics in the nonlinear schrödinger equation, Proc R Soc A, 468, 1716 (2012) · Zbl 1364.76033
[19] Zhong, W. P.; Belić, M.; Huang, T. W., Rogue wave solutions to the generalized nonlinear schrödinger equation with variable coefficients, Phys Rev E, 87, 065201 (2013)
[20] Loomba, S.; Kaur, H.; Gupta, R.; Kumar, C. N.; Raju, T. S., Controlling rogue waves in inhomogeneous bose-einstein condensates, Phys Rev E, 89, 052915 (2014)
[21] Wang, L.; Zhang, J. H.; Liu, C.; Li, M.; Qi, F. H., Breather transition dynamics, peregrine combs and walls, and modulation instability in a variable-coefficient nonlinear schrödinger equation with higher-order effects, Phys Rev E, 93, 062217 (2016)
[22] Wang, L.; Wang, Z. Q.; Sun, W. R.; Shi, Y. Y.; Li, M.; Xu, M., Dynamics of peregrine combs and peregrine walls in an inhomogeneous hirota and maxwell-bloch system, Commun Nonl Sci Numer Simul, 47, 190 (2017) · Zbl 1510.35325
[23] Zuo, D. W.; Gao, Y. T.; Xue, L.; Feng, Y. J., Lax pair, rogue-wave and soliton solutions for a variable-coefficient generalized nonlinear schrödinger equation in an optical fiber, fluid or plasma, Opt Quant Electron, 48, 1 (2016)
[24] Li, M.; Xu, T.; Meng, D. X., Rational solitons in the parity-time-symmetric nonlocal nonlinear Schrödinger model, J Phys Soc Jpn, 85, 124001 (2016)
[25] Zhong, W. P.; Belić, M.; Malomed, B. A., Rogue waves in a two-component manakov system with variable coefficients and an external potential, Phys Rev E, 92, 053201 (2015)
[26] Li, M.; Liang, H.; Xu, T.; Liu, C. J., Vector rogue waves in the mixed coupled nonlinear schrödinger equations, Eur Phys J Plus, 131, 100 (2016)
[27] Huang, Q. M.; Gao, Y. T.; Hu, L., Breather-to-soliton transition for a sixth-order nonlinear schrödinger equation in an optical fiber, Appl Math Lett, 75, 135 (2018) · Zbl 1379.35293
[28] Su, J. J.; Gao, Y. T.; Jia, S. L., Solitons for a generalized sixth-order variable-coefficient nonlinear schrödinger equation for the attosecond pulses in an optical fiber, Commun Nonlinear Sci Numer Simul, 75, 135 (2018) · Zbl 1379.35293
[29] Feng, Y. J.; Gao, Y. T.; Sun, Z. Y.; Zuo, D. W.; Shen, Y. J.; Sun, Y. H., Anti-dark solitons for a variable-coefficient higher-order nonlinear schrödinger equation in an inhomogeneous optical fiber, Phys Scr, 90, 045201 (2015)
[30] Gao, X. Y., Looking at a nonlinear inhomogeneous optical fiber through the generalized higher-order variable-coefficient hirota equation, Appl Math Lett, 73, 143 (2017) · Zbl 1376.78007
[31] Jia, T. T.; Chai, Y. Z.; Hao, H. Q., Multi-soliton solutions and breathers for the coupled nonlinear schrödinger equations via the hirota method, Mathematical Problems in Engineering, 2016, 1741245 (2016) · Zbl 1400.35208
[32] Gao, X. Y., Bäcklund transformation and shock-wave-type solutions for a generalized \((3 + 1)\)-dimensional variable-coefficient b-type kadomtsevCPetviashvili equation in fluid mechanics, Mathematical Problems in Engineering, 2016, 1741245 (2016)
[33] Deng, G. F.; Gao, Y. T., Solitons for the \((3 + 1)\)-dimensional coupled variable-coefficient nonlinear schrödinger equations in an optical fiber, Superlattices Microstruct, 109, 345 (2017)
[34] Lan, Z.; Gao, B., Lax pair, infinitely many conservation laws and solitons for a \((2 + 1)\)-dimensional heisenberg ferromagnetic spin chain equation with time-dependent coefficients, Appl Math Lett, 79, 6 (2018) · Zbl 1459.82338
[35] Wang, L. Y.; Li, L.; Li, Z. H.; Zhou, G. S., Generation, compression, and propagation of pulse trains in the nonlinear schrödinger equation with distributed coefficients, Phys Rev E, 72, 036614 (2005)
[36] Joshi, N., Painlevé property of general variable-coefficient versions of the korteweg-de vries and non-linear schrödinger equations, Phys Lett A, 125, 456 (1987)
[37] Serkin, V. N.; Hasegawa, A., Novel soliton solutions of the nonlinear schrödinger equation model, Phys Rev Lett, 85, 21 (2000)
[38] Kruglov, V. I.; Peacock, A. C.; Harvey, J. D., Exact solutions of the generalized nonlinear schrödinger equation with distributed coefficients, Phys Rev E, 71, 056619 (2005)
[39] Hao, R. Y.; Li, L.; Li, Z. H.; Xue, W. R.; Zhou, G. S., A new approach to exact soliton solutions and soliton interaction for the nonlinear schrödinger equation with variable coefficients, Opt Commun, 236, 79 (2004)
[40] Lü, X.; Zhu, H. W.; Yao, Z. Z.; Meng, X. H.; Zhang, C.; Zhang, C. Y., Multisoliton solutions in terms of double wronskian determinant for a generalized variable-coefficient nonlinear schrödinger equation from plasma physics, arterial mechanics, fluid dynamics and optical communications, Ann Phys, 323, 1947 (2008) · Zbl 1155.35455
[41] Kruglov, V. I.; Peacock, A. C.; Harvey, J. D., Exact self-similar solutions of the generalized nonlinear schrödinger equation with distributed coefficients, Phys Rev Lett, 90, 113902 (2003)
[42] Murphy, T. E., 10-GHz 1.3-ps pulse generation using chirped soliton compression in a raman gain medium, IEEE Photonics Tech Lett, 14, 1424 (2002)
[43] Xue, J. K., Propagation of nonplanar dust-acoustic envelope solitary waves in a two-ion-temperature dusty plasma, Phys Plasmas, 11, 1860 (2004)
[44] Ohta, Y.; Yang, J., Rogue waves in the davey-stewartson I equation, Phys Rev E, 86, 036604 (2012)
[45] Zhang, Y.; Sun, Y. B.; Xiang, W., The rogue waves of the KP equation with self-consistent sources, Appl Math Comput, 263, 204 (2015) · Zbl 1410.35193
[46] Date, E.; Jimbo, M.; Kashiwara, M.; Miwa, T., Transformation groups for soliton equations: IV. a new hierarchy of soliton equations of KP-type, Phys D, 4, 343 (1982) · Zbl 0571.35100
[47] Hirota, R., The direct method in soliton theory (2004), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 1099.35111
[48] Sato, M., Soliton equations as dynamical systems on a infinite dimensional grassmann manifolds (random systems and dynamical systems), RIMS Kokyuroku, 439, 30 (1981) · Zbl 0507.58029
[49] Mu, G.; Qin, Z. Y., Two spatial dimensional \(n\)-rogue waves and their dynamics in Mel’nikov equation, Nonl Anal, 13, 1130 (2014) · Zbl 1303.35101
[50] Chen, S. H., Twisted rogue-wave pairs in the sasa-satsuma equation, Phys Rev E, 88, 023202 (2013)
[51] Baronio, F.; Conforti, M.; Degasperis, A.; Lombardo, S., Rogue waves emerging from the resonant interaction of three waves, Phys Rev Lett, 111, 114101 (2013)
[52] Wang, L.; Li, M.; Qi, F. H.; Xu, T., Modulational instability, nonautonomous breathers and rogue waves for a variable-coefficient derivative nonlinear schrödinger equation in the inhomogeneous plasmas, Phys Plasmas, 22, 032308 (2015)
[53] Rajan, M. S.M.; Hakkim, J.; Mahalingam, A.; Uthayakumar, A., Dispersion management and cascade compression of femtosecond nonautonomous soliton in birefringent fiber, Eur Phys J D, 67, 150 (2013)
[54] Newell, A. C., Nonlinear tunnelling, J Math Phys, 19, 1126 (1978) · Zbl 0383.35046
[55] Serkin, V. N.; Belyaeva, T. L., High-energy optical schrödinger solitons, JETP Lett, 74, 573 (2001)
[56] Dai, C. Q.; Zhou, G. Q.; Zhang, J. F., Controllable optical rogue waves in the femtosecond regime, Phys Rev E, 85, 016603 (2012)
[57] Loomba, S.; Gupta, R.; Kumar, C. N.; Milovic, D., Optical rogons for inhomogeneous nonlinear schrödinger equation with inter modal dispersion, Appl Math Comput, 225, 318 (2013) · Zbl 1334.78033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.