×

Chaotic behavior in a class of delay difference equations. (English) Zbl 1380.34112

Summary: In this paper, we rigorously prove the existence of chaos in a class of delay difference equations, which can be viewed as a discrete analogue of a one-dimensional delay differential equation by using the Euler discretization. We first transform this class of delay difference equations into a high-dimensional discrete dynamical system. Then we prove that the map of the system is chaotic in the sense of both Devaney and Li-Yorke under some conditions, by employing the snap-back repeller theory. Finally, we give some computer simulations to illustrate the theoretical result.

MSC:

34K23 Complex (chaotic) behavior of solutions to functional-differential equations
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
34C60 Qualitative investigation and simulation of ordinary differential equation models

References:

[1] Busenbrg S, Martelli M: Delay Differential Equations and Dynamical Systems. Springer, Berlin; 1991. · Zbl 0727.00007 · doi:10.1007/BFb0083474
[2] Jiang M, Shen Y, Jian J, Liao X: Stability, bifurcation and a new chaos in the logistic differential equation with delay.Phys. Lett. A 2006, 350:221-227. · Zbl 1195.34117 · doi:10.1016/j.physleta.2005.10.019
[3] Peng MS, Uçar A: The use of the Euler method in identification of multiple bifurcations and chaotic behavior in numerical approximations of delay differential equations.Chaos Solitons Fractals 2004, 21:883-891. · Zbl 1054.65126 · doi:10.1016/j.chaos.2003.12.044
[4] Peng MS, Yuan Y: Stability, symmetry-breaking bifurcation and chaos in discrete delayed models.Int. J. Bifurc. Chaos 2008, 18:1477-1501. · Zbl 1147.39301 · doi:10.1142/S0218127408021117
[5] He ZM, Lai X: Bifurcation and chaotic behavior of a discrete-time predator-prey system.Nonlinear Anal., Real World Appl. 2011, 12:403-417. · Zbl 1202.93038 · doi:10.1016/j.nonrwa.2010.06.026
[6] Fan DJ, Wei JJ: Bifurcation analysis of discrete survival red blood cells model.Commun. Nonlinear Sci. Numer. Simul. 2009, 14:3358-3368. · Zbl 1221.37181 · doi:10.1016/j.cnsns.2009.01.015
[7] Kaplan JL, Yorke JA: Ordinary differential equations which yield periodic solutions of differential delay equations.J. Math. Anal. Appl. 1974, 48:317-324. · Zbl 0293.34102 · doi:10.1016/0022-247X(74)90162-0
[8] Dormayer P: The stability of special symmetric solutions of[InlineEquation not available: see fulltext.]with small amplitudes.Nonlinear Anal., Theory Methods Appl. 1990, 14:701-715. · Zbl 0704.34086 · doi:10.1016/0362-546X(90)90045-I
[9] Furomochi T: Existence of periodic solutions of one-dimensional differential-delay equations.Tohoku Math. J. 1978, 30:13-35. · Zbl 0376.34057 · doi:10.2748/tmj/1178230094
[10] Gurney WSC, Blythe SP, Nisbeth RM: Nicholson’s blowflies revisited.Nature 1978, 287:17-21. · doi:10.1038/287017a0
[11] Heiden U: Delays in physiological systems.J. Math. Biol. 1979, 8:345-364. · Zbl 0429.92009 · doi:10.1007/BF00275831
[12] Mackey MC, Glass L: Oscillation and chaos in physiological control systems.Science 1977, 197:287-289. · Zbl 1383.92036 · doi:10.1126/science.267326
[13] Mackey MC, Heiden U: The dynamics of recurrent inhibition.J. Math. Biol. 1984, 19:211-225. · Zbl 0538.92007 · doi:10.1007/BF00277747
[14] Mackey, MC, Commodity price fluctuations: price dependent delays and nonlinearities as explanatory factors, No. 48 (1990)
[15] Heiden U, Mackey MC: The dynamics of production and destruction: analytic insight into complex behavior.J. Math. Biol. 1982, 16:75-101. · Zbl 0523.93038 · doi:10.1007/BF00275162
[16] Heiden U, Walther HO: Existence of chaos in control systems with delayed feedback.J. Differ. Equ. 1983, 47:273-295. · Zbl 0477.93040 · doi:10.1016/0022-0396(83)90037-2
[17] Lani-Wayda B, Walther HO: Chaotic motion generated by delayed negative feedback, Part I: a transversality criterion.Differ. Integral Equ. 1995, 8:1407-1452. · Zbl 0827.34059
[18] Lani-Wayda B, Walther HO: Chaotic motion generated by delayed negative feedback, Part II: construction of nonlinearities.Math. Nachr. 1996, 180:141-211. · Zbl 0853.34065 · doi:10.1002/mana.3211800109
[19] Li TY, Yorke JA: Period three implies chaos.Am. Math. Mon. 1975, 82:985-992. · Zbl 0351.92021 · doi:10.2307/2318254
[20] Devaney RL: An Introduction to Chaotic Dynamical Systems. Addison-Wesley, New York; 1987.
[21] Banks J, Brooks J, Cairns G, Davis G, Stacey P: On Devaney’s definition of chaos.Am. Math. Mon. 1992, 99:332-334. · Zbl 0758.58019 · doi:10.2307/2324899
[22] Huang W, Ye XD: Devaney’s chaos or 2-scattering implies Li-Yorke’s chaos.Topol. Appl. 2002, 117:259-272. · Zbl 0997.54061 · doi:10.1016/S0166-8641(01)00025-6
[23] Wiggins S: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York; 1990. · Zbl 0701.58001 · doi:10.1007/978-1-4757-4067-7
[24] Shi YM, Chen GR: Chaos of discrete dynamical systems in complete metric spaces.Chaos Solitons Fractals 2004, 22:555-571. · Zbl 1067.37047 · doi:10.1016/j.chaos.2004.02.015
[25] Marotto FR: Snap-back repellers imply chaos in[InlineEquation not available: see fulltext.] . J. Math. Anal. Appl. 1978, 63:199-223. · Zbl 0381.58004 · doi:10.1016/0022-247X(78)90115-4
[26] Huang Y, Zou XF: Co-existence of chaos and stable periodic orbits in a simple discrete neural network.J. Nonlinear Sci. 2005, 15:291-303. · Zbl 1098.37069 · doi:10.1007/s00332-005-0647-z
[27] Shi YM, Chen GR: Discrete chaos in Banach spaces.Sci. China Ser. A 2004, 34:595-609. (English version 48, 222-238 (2005)) · Zbl 1170.37306
[28] Shi YM, Yu P: Chaos induced by regular snap-back repellers.J. Math. Anal. Appl. 2008, 337:1480-1494. · Zbl 1131.37023 · doi:10.1016/j.jmaa.2007.05.005
[29] Shi YM, Yu P: Study on chaos by turbulent maps in noncompact sets.Chaos Solitons Fractals 2006, 28:1165-1180. · Zbl 1106.37008 · doi:10.1016/j.chaos.2005.08.162
[30] Shi YM, Yu P, Chen GR: Chaotification of dynamical systems in Banach spaces.Int. J. Bifurc. Chaos 2006, 16:2615-2636. · Zbl 1185.37084 · doi:10.1142/S021812740601629X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.