×

A short disproof of Euler’s conjecture based on quasi-difference matrices and difference matrices. (English) Zbl 1380.05021

Summary: In this note, two classes of quasi-difference matrices, \((2 n + 2, 4; 1, 1; n)\)-QDM and \((4 n + 1, 4; 1, 1; 2 n - 1)\)-QDM, are constructed. Combining the known results of quasi-difference matrices and difference matrices, a new short disproof of Euler’s conjecture on mutually orthogonal Latin squares is given.

MSC:

05B20 Combinatorial aspects of matrices (incidence, Hadamard, etc.)
05B15 Orthogonal arrays, Latin squares, Room squares
Full Text: DOI

References:

[1] Bose, R. C.; Shrikhande, S. S.; Parker, E. T., Further results on the construction of mutually orthogonal Latin squares and the falsity of Eulers conjecture, Canad. J. Math., 12, 189-203 (1960) · Zbl 0093.31905
[2] Colbourn, C. J.; Dinitz, J. H., Mutually orthogonal latin squares: a brief survey of constructions, J. Statist. Plann. Inference, 95, 9-48 (2001) · Zbl 0991.05020
[3] Colbourn, C. J.; Dinitz, J. H., The CRC Handbook of Combinatorial Designs (2007), CRC Press: CRC Press Boca Raton · Zbl 1101.05001
[4] Dougherty, S. T., A coding theoretic solution to the 36 officer problem, Des. Codes Cryptogr., 4, 123-128 (1994) · Zbl 0796.05012
[5] Ge, G., On \((g, 4; 1)\)-difference matrices, Discrete Math., 301, 164-174 (2005) · Zbl 1081.05015
[6] Sade, A., Produit direct-singulier de quasigroups orthogonaux et antiabèlians, Arm. Sot. Sci. Bruxeh (L), 74, 91-99 (1960) · Zbl 0100.02204
[7] Stinson, D. R., A short proof of the nonexistence of a pair of orthogonal Latin squares of order six, J. Combin. Theory Ser. A, 36, 373-376 (1984) · Zbl 0538.05012
[8] Tarry, G., Le problème de 36 officiers, Assoc. Franc. Av. Sci., 29, 170-203 (1900) · JFM 32.0219.04
[9] Wilson, R. M., Concerning the number of mutually orthogonal latin squares, Discrete Math., 9, 181-198 (1974) · Zbl 0283.05009
[10] Zhu, L., Sum composition of orthogonal Latin squares, Acta Math. Appl. Sin. Chinese. Ser., 3, 56-61 (1977)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.