×

Random modeling of adaptive dynamics and evolutionary branching. (English) Zbl 1379.92039

Chalub, Fabio A. C. C. (ed.) et al., The mathematics of Darwin’s legacy. Basel: Birkhäuser (ISBN 978-3-0348-0121-8/hbk; 978-3-0348-0122-5/ebook). Mathematics and Biosciences in Interaction, 175-192 (2011).
Summary: We are interested in modeling the Darwinian dynamics of a polymorphic asexual population, as driven by the interplay of phenotypic variation and natural selection through ecological interactions. Our modeling is based on a stochastic individual-based model that details the dynamics of heritable traits characterizing each individual. We consider the specific scales of the biological framework of adaptive dynamics: rare mutations and large population. We prove that under a good combination of these two scales, the population process is approximated in an evolution long time scale by a Markov pure jump process describing successive equilibria of the population. Then we consider this polymorphic evolution process in the limit of small mutations. From a fine study in the neighborhood of evolutionary singularities, we obtain a full mathematical justification of a heuristic criterion for the phenomenon of evolutionary branching.
For the entire collection see [Zbl 1220.92045].

MSC:

92D15 Problems related to evolution
92D25 Population dynamics (general)
60J85 Applications of branching processes
Full Text: DOI

References:

[1] J. Hofbauer and K. Sigmund, The Theory of Evolution and Dynamical Systems. Mathematical Aspects of Selection. London Mathematical Society Student Texts, 7. Cambridge University Press, U,K., 1988. · Zbl 0678.92010
[2] Marrow, P.; Law, R.; Cannings, C., The coevolution of predator prey interactions - ESSs and Red Queen dynamics, Proc. R. Soc. Lond. Ser. B-Biol. Sci., 250, 133-141 (1992) · doi:10.1098/rspb.1992.0141
[3] Metz, JAJ; Nisbet, RM; Geritz, SAH, How should we define “fitness” for general ecological scenarios?, Trends Ecol. Evol., 7, 198-202 (1992) · doi:10.1016/0169-5347(92)90073-K
[4] Fournier, N.; M´el´eard, S., A microscopic probabilistic description of a locally regulated population and macroscopic approximations, Ann. Appl. Probab., 14, 1880-1919 (2004) · Zbl 1060.92055
[5] N. Champagnat, R. Ferri‘ere, and S. M´el´eard, From individual stochastic processes to macroscopic models in adaptive evolution. Stoch. Models 24 (2008), 2-44, 9th Symposium on Probability and Stochastic Process, Guanajuato, Mexico, Nov. 20- 24, 2006. · Zbl 1157.60339
[6] Champagnat, N., A microscopic interpretation for adaptive dynamics trait substitution sequence models, Stoch. Process. Their Appl., 116, 1127-1160 (2006) · Zbl 1100.60055 · doi:10.1016/j.spa.2006.01.004
[7] N. Champagnat and S. M´el´eard, Polymorphic evolution sequence and evolutionary branching (to appear), Probab. Theory Relat. Fields. · Zbl 1225.92040
[8] Dieckmann, U.; Doebeli, M., On the origin of species by sympatric speciation, Nature, 400, 354-357 (1999) · doi:10.1038/22521
[9] J.A.J. Metz, S.A.H. Geritz, G. Mesz´ena, F.J.A. Jacobs, and J.S. van Heerwaarden, Adaptive dynamics, a geometrical study of the consequences of nearly faithful reproduction. In Stochastic and spatial structures of dynamical systems (Amsterdam,1995), Konink. Nederl. Akad. Wetensch. Verh. Afd. Natuurk. Eerste Reeks, 45, 183- 231, North-Holland, Amsterdam, 1996. · Zbl 0972.92024
[10] Diekmann, O.; Jabin, PE; Mischler, S.; Perthame, B., The dynamics of adaptation: An illuminating example and a Hamilton-Jacobi approach, Theor. Popul. Biol., 67, 257-271 (2005) · Zbl 1072.92035 · doi:10.1016/j.tpb.2004.12.003
[11] G. Barles and B. Perthame, Concentrations and constrained Hamilton-Jacobi equations arising in adaptive dynamics. In D. Danielli (ed.), Recent Developments in Nonlinear Partial Differential Equations, volume 439 of Contemporary Mathematics Series, 57-68, 2007. · Zbl 1137.49027
[12] A. Bovier and N. Champagnat, Time scales in adaptive dynamics: directional selection, fast and slow branching. (in preparation).
[13] Yu, F., Stationary distributions of a model of sympatric speciation, Ann. Appl. Probab., 17, 840-874 (2007) · Zbl 1129.92053 · doi:10.1214/105051606000000916
[14] Bolker, B.; Pacala, SW, Using moment equations to understand stochastically driven spatial pattern formation in ecological systems, Theor. Popul. Biol., 52, 179-197 (1997) · Zbl 0890.92020 · doi:10.1006/tpbi.1997.1331
[15] ´E. Kisdi, Evolutionary branching under asymmetric competition. J. Theor. Biol. 197 (1999), 149-162.
[16] U. Dieckmann and R. Law, Relaxation projections and the method of moments. In The Geometry of Ecological Interactions: Symplifying Spatial Complexity, 412-455, Cambridge University Press, UK, 2000.
[17] Roughgarden, JA, Theory of Population Genetics and Evolutionary Ecology: an Introduction (1979), New York: Macmillan, New York
[18] Desvillettes, L.; Jabin, PE; Mischler, S.; Raoul, G., On selection dynamics for continuous structured populations, Commun. Math. Sci., 6, 729-747 (2008) · Zbl 1176.45009
[19] Freidlin, MI; Wentzel, AD, Random Perturbations of Dynamical Systems (1984), Germany: Springer-Verlag, Germany · Zbl 0522.60055
[20] Dieckmann, U.; Law, R., The dynamical theory of coevolution: A derivation from stochastic ecological processes, J. Math. Biol., 34, 579-612 (1996) · Zbl 0845.92013 · doi:10.1007/BF02409751
[21] Zeeman, ML, Hopf bifurcations in competitive three-dimensional Lotka-Volterra systems, Dynam. Stability Systems, 8, 189-217 (1993) · Zbl 0797.92025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.