×

Numerical simulation of the Rayleigh-Taylor instability of a miscible slice in a porous medium. (English) Zbl 1379.76026

Summary: Convective instability in miscible slices is important in understanding the contaminant spreading in groundwater and sample dispersion in a chromatographic column. In the present study, the temporal evolution of the Rayleigh-Taylor instability of a miscible high-density slice in a porous medium is analyzed theoretically using nonlinear numerical simulations. Nonlinear governing equations are derived and solved with the Fourier spectral method. To connect the previous linear stability analysis and the present nonlinear simulation, the most unstable disturbance which was identified in the linear analysis is employed as an initial condition for the nonlinear study. In contrast to the fingering between two semi-infinite regions, the nonlinear fingering of a finite slice is influenced by the depth of the high-density region. The present nonlinear analysis shows that there exists a critical depth below which the system is linearly unstable, but nonlinear phenomena cannot be expected. The nonlinear simulation results show that nonlinear competition yields a series of cells of slightly different widths and amplitudes. Also, it is found that the upper stable region hinders the development of instability motions and stabilizes the system.

MSC:

76S05 Flows in porous media; filtration; seepage
76E06 Convection in hydrodynamic stability
76E30 Nonlinear effects in hydrodynamic stability
76M25 Other numerical methods (fluid mechanics) (MSC2010)
Full Text: DOI

References:

[1] Horton CW, Rogers FT Jr (1945) Convection currents in a porous medium. J Appl Phys 6:367-370 · Zbl 0063.02071 · doi:10.1063/1.1707601
[2] Lapwood ER (1948) Convection of a fluid in a porous medium. Proc Camb Philos Soc 44:508-521 · Zbl 0032.09203 · doi:10.1017/S030500410002452X
[3] Taylor GI (1950) The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proc R Soc Lond Ser A 201:192-196 · Zbl 0038.12201 · doi:10.1098/rspa.1950.0052
[4] Wooding RA (1962) The stability of an interface between miscible fluids in a porous medium. ZAMP 13:255-266 · Zbl 0113.20301 · doi:10.1007/BF01601087
[5] Caltagirone J-P (1980) Stability of a saturated porous layer subject to a sudden rise in surface temperature: comparison between the linear and energy methods. Q J Mech Appl Math 33:47-58 · Zbl 0423.73087 · doi:10.1093/qjmam/33.1.47
[6] Ennis-King J, Preston I, Paterson L (2005) Onset of convection in anisotropic porous media subject to a rapid change in boundary conditions. Phys Fluids 17:084107 · Zbl 1187.76141 · doi:10.1063/1.2033911
[7] Riaz A, Hesse M, Tchelepi HA, Orr FM Jr (2006) Onset of convection in a gravitationally unstable, diffusive boundary layer in porous media. J Fluid Mech 548:87-111 · doi:10.1017/S0022112005007494
[8] Hassanzadeh H, Poolado-Darvish M, Keith DW (2007) Scaling behavior of convective mixing, with application of geological storage of \[{\rm CO}_2\] CO2. AIChE J 53:1121-1131 · doi:10.1002/aic.11157
[9] Rapaka S, Chen S, Pawar R, Stauffer PH, Zhang D (2008) Non-modal growth of perturbations in density-driven convection in porous media. J Fluid Mech 609:285-303 · Zbl 1147.76030 · doi:10.1017/S0022112008002607
[10] Hildago J, Carrera J (2009) Effect of dispersion on the onset of convection during \[{\rm CO}_2\] CO2 sequestration. J Fluid Mech 640:441-452 · Zbl 1183.76712 · doi:10.1017/S0022112009991480
[11] Wessel-Berg D (2009) On a linear stability problem related to underground \[{\rm CO}_2\] CO2 storage. SIAM J Appl Math 70:1219-1238 · Zbl 1391.76758 · doi:10.1137/070702655
[12] Manickam O, Homsy GM (1995) Fingering instabilities in vertical miscible displacement flows in porous media. J Fluid Mech 288:75-102 · Zbl 0853.76024 · doi:10.1017/S0022112095001078
[13] Tan CT, Homsy GM (1986) Stability of miscible displacements in porous media: rectilinear flow. Phys Fluids 29:3549-3556 · Zbl 0608.76087 · doi:10.1063/1.865832
[14] Trevelyan PMJ, Alamarcha C, de Wit A (2011) Buoyancy-driven instabilities of miscible two-layer stratifications in porous media and Hele-Shaw cells. J Fluid Mech 670:38-65 · Zbl 1225.76127 · doi:10.1017/S0022112010005008
[15] Ben Y, Demekhin EA, Chang H-C (2002) A spectral theory for small-amplitude miscible fingering. Phys Fluids 14:999-1010 · Zbl 1185.76534 · doi:10.1063/1.1446885
[16] Pritchard D (2009) The linear stability of double-diffusive miscible rectilinear displacements in a Hele-Shaw cell. Eur J Mech B Fluids 28:564-577 · Zbl 1167.76330 · doi:10.1016/j.euromechflu.2009.01.004
[17] Pritchard D (2004) The instability of thermal and fluid fronts during radial injection in a porous medium. J Fluid Mech 508:133-163 · Zbl 1065.76085 · doi:10.1017/S0022112004009000
[18] Gandhi J, Trevelyan PMJ (2014) Onset conditions for Rayleigh-Taylor instability with step function density profiles. J Eng Math 86:31-48 · Zbl 1356.76378 · doi:10.1007/s10665-013-9649-2
[19] De Wit A, Bertho Y, Martin M (2005) Viscous fingering of miscible slices. Phys Fluids 17:054114 · Zbl 1187.76121 · doi:10.1063/1.1909188
[20] Kim MC, Yadav D (2014) Linear and nonlinear analyses of the onset of buoyancy-induced instability in an unbounded porous medium saturated by miscible fluids. Transp Porous Med 104:407-433 · doi:10.1007/s11242-014-0341-4
[21] Kim MC (2015) Linear stability analysis on the onset of the Rayleigh-Taylor instability of a miscible slice in a porous medium. J Eng Math 90:105-118 · Zbl 1374.76218 · doi:10.1007/s10665-014-9722-5
[22] Kim MC (2014) Miscible gravitational instability of initially stable horizontal interface in a porous medium. Phys Fluids 26:114102 · doi:10.1063/1.4900859
[23] Selim A, Rees DAS (2007) The stability of a developing thermal front in a porous medium. I. Linear theory. J Porous Media 10:1-16 · doi:10.1615/JPorMedia.v10.i1.10
[24] Selim A, Rees DAS (2007) The stability of a developing thermal front in a porous medium. II. Nonlinear evolution. J Porous Media 10:17-34 · doi:10.1615/JPorMedia.v10.i1.20
[25] Mishra M, Martin M, De Wit A (2008) Differences in miscible viscous fingering of finite width slices with positive or negative log-mobility ratio. Phys Rev E 78:066306 · doi:10.1103/PhysRevE.78.066306
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.