×

Existence results for fractional neutral functional integro-differential evolution equations with infinite delay in Banach spaces. (English) Zbl 1379.34073

Summary: In this paper, we investigate the existence results for a class of abstract fractional neutral integro-differential evolution systems involving the Caputo derivative in Banach spaces. The main techniques rely on the fractional calculus, properties of characteristic solution operators, Mönch’s fixed point theorem via measures of noncompactness. Particularly, we do not assume that characteristic solution operators are compact. The application is given to illustrate the theory. The results of this article are generalization and improvement of the recent results on this issue.

MSC:

34K37 Functional-differential equations with fractional derivatives
34K30 Functional-differential equations in abstract spaces
47H08 Measures of noncompactness and condensing mappings, \(K\)-set contractions, etc.
34K40 Neutral functional-differential equations

References:

[1] Kilbas A, Srivastava H, Trujillo JJ: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam; 2006. · Zbl 1092.45003
[2] Lakshmikantham V, Leela S, Vasundhara Devi J: Theory of Fractional Dynamic Systems. Cambridge Scientific Publishers, Cambridge; 2009. · Zbl 1188.37002
[3] Miller KS, Ross B: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York; 1993. · Zbl 0789.26002
[4] Podlubny I: Fractional Differential Equations. Academic Press, New York; 1999. · Zbl 0924.34008
[5] Baleanu D, Gunvenc ZB, Machdo JAT: New Trends in Nanotechnology and Fractional Calculus Applications. Springer, Berlin; 2010. · Zbl 1196.65021 · doi:10.1007/978-90-481-3293-5
[6] Baleanu D, Diethelm K, Scalas E, Trujillo JJ: Fractional Calculus Models and Numerical Methods. World Scientific, Singapore; 2012. [Series on Complexity, Nonlinearity and Chaos] · Zbl 1248.26011
[7] Baleanu D, Tenreiro Machado JA, Luo ACJ: Fractional Dynamics and Control. Springer, Berlin; 2012. · Zbl 1231.93003 · doi:10.1007/978-1-4614-0457-6
[8] Wu GC, Baleanu D: Variational iteration method for the Burgers’ flow with fractional derivatives-new Lagrange multipliers.Appl. Math. Model. 2013,37(9):6183-6190. · Zbl 1438.76046 · doi:10.1016/j.apm.2012.12.018
[9] Baleanu D, Mustafa OG, Agarwal RP: On[InlineEquation not available: see fulltext.]- solutions for a class of sequential fractional differential equations.Appl. Math. Comput. 2011,218(5):2074-2081. · Zbl 1235.34008 · doi:10.1016/j.amc.2011.07.024
[10] Hernández E, O’Regan D, Balachandran K: On recent developments in the theory of abstract differential equations with fractional derivatives.Nonlinear Anal. 2010, 73:3462-3471. · Zbl 1229.34004 · doi:10.1016/j.na.2010.07.035
[11] Zhou Y, Jiao F: Existence of mild solutions for fractional neutral evolution equations.Comput. Math. Appl. 2010, 59:1063-1077. · Zbl 1189.34154 · doi:10.1016/j.camwa.2009.06.026
[12] Zhou Y, Jiao F, Li J: Existence and uniqueness for fractional neutral differential equations with infinite delay.Nonlinear Anal. 2009, 71:3249-3256. · Zbl 1177.34084 · doi:10.1016/j.na.2009.01.202
[13] Baleanu D, Mustafa OG: On the global existence of solutions to a class of fractional differential equations.Comput. Math. Appl. 2010,59(5):1835-1841. · Zbl 1189.34006 · doi:10.1016/j.camwa.2009.08.028
[14] Baleanu D, Mustafa OG, Agarwal RP: An existence result for a superlinear fractional differential equation.Appl. Math. Lett. 2010,23(9):1129-1132. · Zbl 1200.34004 · doi:10.1016/j.aml.2010.04.049
[15] dos Santos JPC, Arjunan MM, Cuevas C: Existence results for fractional neutral integro-differential equations with state dependent delay.Comput. Math. Appl. 2011,62(3):1275-1283. · Zbl 1228.45014 · doi:10.1016/j.camwa.2011.03.048
[16] dos Santos JPC, Vijayakumar V, Murugesu R: Existence of mild solutions for nonlocal Cauchy problem for fractional neutral integro-differential equation with unbounded delay.Commun. Math. Anal. 2013,14(1):59-71. · Zbl 1283.34071
[17] Ji S, Li G, Wang M: Controllability of impulsive differential systems with nonlocal conditions.Appl. Math. Comput. 2011, 217:6981-6989. · Zbl 1219.93013 · doi:10.1016/j.amc.2011.01.107
[18] Wang JR, Fan Z, Zhou Y: Nonlocal controllability of semilinear dynamic systems with fractional derivative in Banach spaces.J. Optim. Theory Appl. 2012,154(1):292-302. · Zbl 1252.93028 · doi:10.1007/s10957-012-9999-3
[19] Pazy A: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York; 1983. · Zbl 0516.47023 · doi:10.1007/978-1-4612-5561-1
[20] Yan B: Boundary value problems on the half-line with impulses and infinite delay.J. Math. Anal. Appl. 2001,259(1):94-114. · Zbl 1009.34059 · doi:10.1006/jmaa.2000.7392
[21] Kamenskii M, Obukhovskii V, Zecca P: Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces. de Gruyter, Berlin; 2001. · Zbl 0988.34001 · doi:10.1515/9783110870893
[22] O’Regan D, Precup R: Existence criteria for integral equations in Banach spaces.J. Inequal. Appl. 2001, 6:77-97. · Zbl 0993.45011
[23] Mönch H: Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces.Nonlinear Anal. 1980, 4:985-999. · Zbl 0462.34041 · doi:10.1016/0362-546X(80)90010-3
[24] Banas J, Goebel K: Measure of Noncompactness in Banach Spaces. Marcel Dekker, New York; 1980. [Lecture Notes in Pure and Applied Mathematics] · Zbl 0441.47056
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.