×

A hybrid fixed-time observer for state estimation of linear systems. (English) Zbl 1378.93026

Summary: This paper deals with the problem of state estimation for single-output linear systems. Under some structural properties of the system matrices it is possible to design a hybrid observer capable of estimating the state of the system exactly and in a finite time. Moreover, the proposed hybrid observer provides fixed-time convergence of the state estimation error, i.e. there exists a convergence time that is bounded and such a bound is independent of the initial estimation error. The robustness properties of the hybrid observer are analyzed for the linear system with unknown inputs, and the linear system with unknown inputs and parametric uncertainty. Some simulation results illustrate the effectiveness of the proposed hybrid observer.

MSC:

93B07 Observability
93E10 Estimation and detection in stochastic control theory
93C05 Linear systems in control theory
Full Text: DOI

References:

[1] Andrieu, V.; Praly, L.; Astolfi, A., Homogeneous approximation, recursive observer design, and output feedback, SIAM Journal on Control and Optimization, 47, 4, 1814-1850 (2008) · Zbl 1165.93020
[2] Angulo, M. T.; Moreno, J. A.; Fridman, L., Robust exact uniformly convergent arbitrary order differentiator, Automatica, 49, 8, 2489-2495 (2013) · Zbl 1364.93119
[3] Bacciotti, A.; Rosier, L., Liapunov functions and stability in control theory, (Communications and control engineering (2005), Springer-Verlag Berlin Heidelberg: Springer-Verlag Berlin Heidelberg Berlin) · Zbl 1078.93002
[4] Bernuau, E.; Efimov, D.; Perruquetti, W.; Polyakov, A., On homogeneity and its application in sliding mode control, Journal of the Franklin Institute, 351, 4, 1866-1901 (2014) · Zbl 1372.93054
[5] Cruz-Zavala, E., & Moreno, J. A. (2016). Lyapunov functions of continuous and discontinuous differentiators, In Proceedings of the 10th IFAC symposium on nonlinear control systems; Cruz-Zavala, E., & Moreno, J. A. (2016). Lyapunov functions of continuous and discontinuous differentiators, In Proceedings of the 10th IFAC symposium on nonlinear control systems
[6] Cruz-Zavala, E.; Moreno, J. A.; Fridman, L. M., Uniform robust exact differentiator, IEEE Transactions on Automatic Control, 56, 11, 2727-2733 (2011) · Zbl 1368.94028
[7] Davila, J.; Fridman, L.; Levant, A., Second-order sliding-mode observer for mechanical systems, IEEE Transactions on Automatic Control, 50, 11, 1785-1789 (2005) · Zbl 1365.93071
[8] Du, H.; Qian, C.; Yang, S.; Li, S., Recursive design of finite-time convergent observers for a class of time-varying nonlinear systems, Automatica, 49, 2, 601-609 (2013) · Zbl 1259.93029
[9] Edwards, C.; Spurgeon, S. K., Sliding mode control: theory and applications (1998), Taylor and Francis: Taylor and Francis London
[10] Floquet, T.; Barbot, J. P., Super twisting algorithm-based step-by-step sliding mode observers for nonlinear systems with unknown inputs, International Journal of System Science, 38, 10, 803-815 (2007) · Zbl 1128.93311
[11] Fridman, L.; Levant, A.; Davila, J., Observation of linear systems with unknown inputs via high-order sliding-modes, International Journal of System Science, 38, 10, 773-791 (2007) · Zbl 1128.93312
[12] Goebel, R.; Sanfelice, R. G.; Teel, A. R., Hybrid dynamical systems: modeling, stability and robustness (2012), Princeton University Press: Princeton University Press New Jersey, USA · Zbl 1241.93002
[13] Khalil, H. K., Performance recovery under output feedback sampled-data stabilization of a class of nonlinear systems, IEEE Transactions on Automatic Control, 49, 12, 2173-2184 (2004) · Zbl 1365.93402
[14] Levant, A., High-order sliding modes: differentiation and output-feedback control, International Journal of Control, 76, 9-10, 924-941 (2003) · Zbl 1049.93014
[15] Levant, A., Homogeneity approach to high-order sliding mode design, Automatica, 41, 5, 823-830 (2005) · Zbl 1093.93003
[16] Lopez-Ramirez, F., Polyakov, A., Efimov, D., & Perruquetti, W. (2016). Finite-time and fixed-time observers design via implicit Lyapunov function, In 15th European control conference; Lopez-Ramirez, F., Polyakov, A., Efimov, D., & Perruquetti, W. (2016). Finite-time and fixed-time observers design via implicit Lyapunov function, In 15th European control conference · Zbl 1378.93095
[17] Menard, T.; Moulay, E.; Perruquetti, W., A global high-gain finite-time observer, IEEE Transactions on Automatic Control (2010) · Zbl 1368.93052
[18] Perruquetti, W.; Floquet, T.; Moulay, E., Finite-time observers: Application to secure communication, IEEE Transactions on Automatic Control, 53, 1, 356-360 (2008) · Zbl 1367.94361
[19] Polyakov, A., Nonlinear feedback design for fixed-time stabilization of linear control systems, IEEE Transactions on Automatic Control, 57, 99, 2106-2110 (2012) · Zbl 1369.93128
[20] Polyakov, A., Efimov, D., & Perruquetti, W. (2014). Homogeneous differentiator design using implicit Lyapunov function method, In Proceedings of the 2014 European control conference; Polyakov, A., Efimov, D., & Perruquetti, W. (2014). Homogeneous differentiator design using implicit Lyapunov function method, In Proceedings of the 2014 European control conference
[21] Ríos, H.; Mera, M.; Efimov, D.; Polyakov, A., Robust output-control for uncertain linear systems: Homogeneous differentiator based observer approach, International Journal of Robust and Nonlinear Control, 27, 11, 1895-1914 (2017) · Zbl 1367.93167
[22] Shen, Y.; Huang, Y., Uniformly observable and globally Lipschitzian nonlinear systems admit global finite-time observers, IEEE Transactions on Automatic Control, 54, 11, 2621-2625 (2009) · Zbl 1367.93097
[23] Shtessel, Y.; Edwards, C.; Fridman, L.; Levant, A., Sliding mode control and observation (2014), Birkhauser: Birkhauser New York
[24] Slotine, J. J.E.; Hedrick, J. K.; Misawa, E. A., On sliding observers for nonlinear systems, Transactions of the ASME: Journal of Dynamic Systems, Measurement and Control, 109, 245-252 (1987) · Zbl 0661.93011
[25] Tan, C. P.; Edwards, C., Sliding mode observers for detection and reconstruction of sensor faults, Automatica, 38, 1815-1821 (2002) · Zbl 1011.93505
[26] Trentelman, H. L.; Stoorvogel, A. A.; Hautus, M., Control theory for linear systems (2001), Springer-Verlag: Springer-Verlag London, Great Britain · Zbl 0963.93004
[27] Tuan, H., Apkaryan, P., & Tuy, H. (1999). Advanced global optimization algorithms for parameterized LMIs, In Proceedings of the 38th IEEE conference on decision and control; Tuan, H., Apkaryan, P., & Tuy, H. (1999). Advanced global optimization algorithms for parameterized LMIs, In Proceedings of the 38th IEEE conference on decision and control
[28] Utkin, V.; Guldner, J.; Shi, J., Sliding modes in electromechanical systems (1999), Taylor and Francis: Taylor and Francis London
[29] Walcott, B. L.; Zak, S. H., State observation of nonlinear uncertain dynamical systems, IEEE Transactions on Automatic Control, 32, 2, 166-170 (1987) · Zbl 0618.93019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.