×

Classical investigation of long-range coherence in biological systems. (English) Zbl 1378.92021

Summary: Almost five decades ago, H. Fröhlich [“Long-range coherence and energy storage in biological systems,” Int. J. Quantum Chem. 2, No. 5, 641–649 (1968; doi:10.1002/qua.560020505)] reported, on a theoretical basis, that the excitation of quantum modes of vibration in contact with a thermal reservoir may lead to steady states, where under high enough rate of energy supply, only specific low-frequency modes of vibration are strongly excited. This nonlinear phenomenon was predicted to occur in biomolecular systems, which are known to exhibit complex vibrational spectral properties, especially in the terahertz frequency domain. However, since the effects of terahertz or lower-frequency modes are mainly classical at physiological temperatures, there are serious doubts that Fröhlich’s quantum description can be applied to predict such a coherent behavior in a biological environment, as suggested by the author. In addition, a quantum formalism makes the phenomenon hard to investigate using realistic molecular dynamics simulations (MD) as they are usually based on the classical principles. In the current paper, we provide a general classical Hamiltonian description of a nonlinear open system composed of many degrees of freedom (biomolecular structure) excited by an external energy source. It is shown that a coherent behaviour similar to Fröhlich’s effect is to be expected in the classical case for a given range of parameter values. Thus, the supplied energy is not completely thermalized but stored in a highly ordered fashion. The connection between our Hamiltonian description, carried out in the space of normal modes, and a more standard treatment in the physical space is emphasized in order to facilitate the prediction of the effect from MD simulations. It is shown how such a coherent phenomenon may induce long-range resonance effects that could be of critical importance at the biomolecular level. The present work is motivated by recent experimental evidences of long-lived excited low-frequency modes in protein structures, which were reported as a consequence of the Fröhlich’s effect.{
©2016 American Institute of Physics}

MSC:

92C42 Systems biology, networks
81P40 Quantum coherence, entanglement, quantum correlations

Software:

AMBER; Gromacs
Full Text: DOI

References:

[1] Markelz, A.; Whitmire, S.; Hillebrecht, J.; Birge, R., THz time domain spectroscopy of biomolecular conformational modes, Phys. Med. Biol., 47, 21, 3797 (2002) · doi:10.1088/0031-9155/47/21/318
[2] Zhang, C.; Tarhan, E.; Ramdas, A.; Weiner, A.; Durbin, S. M., Broadened far-infrared absorption spectra for hydrated and dehydrated myoglobin, J. Phys. Chem. B, 108, 28, 10077-10082 (2004) · doi:10.1021/jp049933y
[3] Xu, J.; Plaxco, K. W.; Allen, S. J., Probing the collective vibrational dynamics of a protein in liquid water by terahertz absorption spectroscopy, Protein Sci., 15, 5, 1175-1181 (2006) · doi:10.1110/ps.062073506
[4] Turton, D. A.; Senn, H. M.; Harwood, T.; Lapthorn, A. J.; Ellis, E. M.; Wynne, K., Terahertz underdamped vibrational motion governs protein-ligand binding in solution, Nat. Commun., 5, 3999 (2014) · doi:10.1038/ncomms4999
[5] Falconer, R. J.; Markelz, A. G., Terahertz spectroscopic analysis of peptides and proteins, J. Infrared, Millimeter, Terahertz Waves, 33, 10, 973-988 (2012) · doi:10.1007/s10762-012-9915-9
[6] Van Gunsteren, W. F.; Bakowies, D.; Baron, R.; Chandrasekhar, I.; Christen, M.; Daura, X.; Gee, P.; Geerke, D. P.; Glättli, A.; Hünenberger, P. H., Biomolecular modeling: Goals, problems, perspectives, Angew. Chem., Int. Ed., 45, 25, 4064-4092 (2006) · doi:10.1002/anie.200502655
[7] Skjaerven, L.; Hollup, S. M.; Reuter, N., Normal mode analysis for proteins, J. Mol. Struct.: THEOCHEM, 898, 1, 42-48 (2009) · doi:10.1016/j.theochem.2008.09.024
[8] Heyden, M.; Havenith, M., Combining THz spectroscopy and MD simulations to study protein-hydration coupling, Methods, 52, 1, 74-83 (2010) · doi:10.1016/j.ymeth.2010.05.007
[9] Conti Nibali, V.; Havenith, M., New insights into the role of water in biological function: Studying solvated biomolecules using terahertz absorption spectroscopy in conjunction with molecular dynamics simulations, J. Am. Chem. Soc., 136, 37, 12800-12807 (2014) · doi:10.1021/ja504441h
[10] Brown, K.; Erfurth, S.; Small, E.; Peticolas, W., Conformationally dependent low-frequency motions of proteins by laser Raman spectroscopy, Proc. Natl. Acad. Sci. U.S.A., 69, 6, 1467-1469 (1972) · doi:10.1073/pnas.69.6.1467
[11] Genzel, L.; Keilmann, F.; Martin, T.; Wintreling, G.; Yacoby, Y.; Fröhlich, H.; Makinen, M. W., Low-frequency Raman spectra of lysozyme, Biopolymers, 15, 1, 219-225 (1976) · doi:10.1002/bip.1976.360150115
[12] Fröhlich, H., Long-range coherence and energy storage in biological systems, Int. J. Quantum Chem., 2, 5, 641-649 (1968) · doi:10.1002/qua.560020505
[13] Fröhlich, H., The biological effects of microwaves and related questions, Adv. Electron. Electron Phys., 53, 85-152 (1980) · doi:10.1016/S0065-2539(08)60259-0
[14] Wu, T.; Austin, S., Bose condensation in biosystems, Phys. Lett. A, 64, 1, 151-152 (1977) · doi:10.1016/0375-9601(77)90560-6
[15] Wu, T.; Austin, S., Cooperative behavior in biological systems, Phys. Lett. A, 65, 1, 74-76 (1978) · doi:10.1016/0375-9601(78)90137-8
[16] Cifra, M.; Pokornỳ, J.; Havelka, D.; Kučera, O., Electric field generated by axial longitudinal vibration modes of microtubule, BioSystems, 100, 2, 122-131 (2010) · doi:10.1016/j.biosystems.2010.02.007
[17] Preto, J.; Pettini, M.; Tuszynski, J. A., Possible role of electrodynamic interactions in long-distance biomolecular recognition, Phys. Rev. E, 91, 5, 052710 (2015) · doi:10.1103/PhysRevE.91.052710
[18] Reimers, J. R.; McKemmish, L. K.; McKenzie, R. H.; Mark, A. E.; Hush, N. S., Weak, strong, and coherent regimes of Fröhlich condensation and their applications to terahertz medicine and quantum consciousness, Proc. Natl. Acad. Sci. U.S.A., 106, 11, 4219-4224 (2009) · doi:10.1073/pnas.0806273106
[19] Sewell, G. L., Quantum macrostatistical theory of nonequilibrium steady states, Rev. Math. Phys., 17, 9, 977-1020 (2005) · Zbl 1111.82031 · doi:10.1142/S0129055X05002492
[20] Kadji, H. E.; Orou, J. C.; Yamapi, R.; Woafo, P., Nonlinear dynamics and strange attractors in the biological system, Chaos, Solitons Fractals, 32, 2, 862-882 (2007) · Zbl 1138.37050 · doi:10.1016/j.chaos.2005.11.063
[21] Belloni, F.; Nassisi, V.; Alifano, P.; Monaco, C.; Tala, A.; Tredici, M.; Raino, A., A suitable plane transmission line at 900 MHz rf fields for E. coli DNA studies, Rev. Sci. Instrum., 76, 5, 054302 (2005) · doi:10.1063/1.1897671
[22] Pakhomov, A. G.; Akyel, Y.; Pakhomova, O. N.; Stuck, B. E.; Murphy, M. R., Current state and implications of research on biological effects of millimeter waves, Bioelectromagnetics, 19, 7, 393-413 (1998) · doi:10.1002/(SICI)1521-186X(1998)19:7<393::AID-BEM1>3.0.CO;2-X
[23] Gervino, G.; Autino, E.; Kolomoets, E.; Leucci, G.; Balma, M., Diagnosis of bladder cancer at 465 MHz, Electromagn. Biol. Med., 26, 2, 119-134 (2007) · doi:10.1080/15368370701380850
[24] Del Giudice, E.; De Ninno, A.; Fleischmann, M.; Mengoli, G.; Milani, M.; Talpo, G.; Vitiello, G., Coherent quantum electrodynamics in living matter, Electromagn. Biol. Med., 24, 3, 199-210 (2005) · doi:10.1080/15368370500379574
[25] Cifra, M.; Fields, J. Z.; Farhadi, A., Electromagnetic cellular interactions, Prog. Biophys. Mol. Biol., 105, 3, 223-246 (2011) · doi:10.1016/j.pbiomolbio.2010.07.003
[26] Lundholm, I. V.; Rodilla, H.; Wahlgren, W. Y.; Duelli, A.; Bourenkov, G.; Vukusic, J.; Friedman, R.; Stake, J.; Schneider, T.; Katona, G., Terahertz radiation induces non-thermal structural changes associated with Fröhlich condensation in a protein crystal, Struct. Dyn., 2, 5, 054702 (2015) · doi:10.1063/1.4931825
[27] Pokornỳ, J., Excitation of vibrations in microtubules in living cells, Bioelectrochemistry, 63, 1, 321-326 (2004) · doi:10.1016/j.bioelechem.2003.09.028
[28] Turcu, I., A generic model for the Fröhlich rate equations, Phys. Lett. A, 234, 3, 181-186 (1997) · Zbl 0967.82505 · doi:10.1016/S0375-9601(97)00500-8
[29] Prigogine, I., Non-Equilibrium Statistical Mechanics: Monographs in Statistical Physics and Thermodynamics (1962) · Zbl 0106.43301
[30] Gardiner, C. W., Handbook of Stochastic Methods, 3 (1985)
[31] Preto, J., Semi-classical statistical approach to Fröhlich condensation theory, J. Biol. Phys.
[32] Pokorny, J.; Wu, T.-M., Biophysical Aspects of Coherence and Biological Order (1998)
[33] Geesink, J.; Meijer, D., Bio-soliton model that predicts non-thermal electromagnetic radiation frequency bands, that either stabilize or destabilize life conditions (2016)
[34] Craig, D. P.; Thirunamachandran, T., Molecular Quantum Electrodynamics: An Introduction to Radiation-Molecule Interactions (1984)
[35] Stephen, M., First-order dispersion forces, J. Chem. Phys., 40, 3, 669-673 (1964) · doi:10.1063/1.1725188
[36] McLachlan, A., Resonance transfer of molecular excitation energy, Mol. Phys., 8, 5, 409-423 (1964) · doi:10.1080/00268976400100471
[37] Preto, J.; Pettini, M., Resonant long-range interactions between polar macromolecules, Phys. Lett. A, 377, 8, 587-591 (2013) · Zbl 1428.92131 · doi:10.1016/j.physleta.2012.12.034
[38] Preto, J.; Floriani, E.; Nardecchia, I.; Ferrier, P.; Pettini, M., Experimental assessment of the contribution of electrodynamic interactions to long-distance recruitment of biomolecular partners: Theoretical basis, Phys. Rev. E, 85, 4, 041904 (2012) · doi:10.1103/PhysRevE.85.041904
[39] Nardecchia, I.; Spinelli, L.; Preto, J.; Gori, M.; Floriani, E.; Jaeger, S.; Ferrier, P.; Pettini, M., Experimental detection of long-distance interactions between biomolecules through their diffusion behavior: Numerical study, Phys. Rev. E, 90, 2, 022703 (2014) · doi:10.1103/PhysRevE.90.022703
[40] Heisenberg, W., Mehrkörperproblem und resonanz in der quantenmechanik, Z. Phys., 38, 6, 411-426 (1926) · JFM 52.0962.02 · doi:10.1007/BF01397160
[41] London, F., Über einige eigenschaften und anwendungen der molekularkräfte, Z. Phys. Chem., 11, 222-251 (1930)
[42] Davydov, A. S., Solitons in molecular systems, Nonlinear and Turbulent Processes in Physics, 1, 731 (1985) · Zbl 0597.35001 · doi:10.1007/978-94-017-3025-9
[43] Fröhlich, H., Selective long range dispersion forces between large systems, Phys. Lett. A, 39, 2, 153-154 (1972) · doi:10.1016/0375-9601(72)91060-2
[44] Boström, M.; Longdell, J.; Mitchell, D. J.; Ninham, B., Resonance interaction between one excited and one ground state atom, Eur. Phys. J. D, 22, 1, 47-52 (2003) · doi:10.1140/epjd/e2002-00214-0
[45] Zwanzig, R., Nonequilibrium Statistical Mechanics (2001) · Zbl 1267.82001
[46] Šrobár, F., Radiating Fröhlich system as a model of cellular electromagnetism, Electromagn. Biol. Med., 34, 4, 355-360 (2015) · doi:10.3109/15368378.2014.934381
[47] Ashcroft, N.; Mermin, N., Solid State Physics (2011) · Zbl 1118.82001
[48] Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A. E.; Berendsen, H. J., Gromacs: Fast, flexible, and free, J. Comput. Chem., 26, 16, 1701-1718 (2005) · doi:10.1002/jcc.20291
[49] Pearlman, D. A.; Case, D. A.; Caldwell, J. W.; Ross, W. S.; Cheatham, T. E.; DeBolt, S.; Ferguson, D.; Seibel, G.; Kollman, P., Amber, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules, Comput. Phys. Commun., 91, 1, 1-41 (1995) · Zbl 0886.92035 · doi:10.1016/0010-4655(95)00041-D
[50] English, N. J.; Mooney, D. A., Denaturation of hen egg white lysozyme in electromagnetic fields: A molecular dynamics study, J. Chem. Phys., 126, 9, 091105 (2007) · doi:10.1063/1.2515315
[51] Luccioli, S.; Imparato, A.; Lepri, S.; Piazza, F.; Torcini, A., Discrete breathers in a realistic coarse-grained model of proteins, Phys. Biol., 8, 4, 046008 (2011) · doi:10.1088/1478-3975/8/4/046008
[52] Chen, W.; Sharma, M.; Resta, R.; Galli, G.; Car, R., Role of dipolar correlations in the infrared spectra of water and ice, Phys. Rev. B, 77, 24, 245114 (2008) · doi:10.1103/PhysRevB.77.245114
[53] Bolterauer, H., Elementary arguments that the Wu-Austin Hamiltonian has no finite ground state (the search for a microscopic foundation of Fröhlichs theory), Bioelectrochem. Bioenerg., 48, 2, 301-304 (1999) · doi:10.1016/S0302-4598(99)00030-6
[54] Gardiner, C. W., Handbook of Stochastic Methods (1983) · Zbl 0515.60002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.