×

BCJ numerators from reduced Pfaffian. (English) Zbl 1378.81071

Summary: By expanding the reduced Pfaffian in the tree level Cachazo-He-Yuan (CHY) integrands for Yang-Mills (YM) and nonlinear sigma model (NLSM), we can get the Bern-Carrasco-Johansson (BCJ) numerators in Del Duca-Dixon-Maltoni (DDM) form for arbitrary number of particles in any spacetime dimensions. In this work, we give a set of very straightforward graphic rules based on spanning trees for a direct evaluation of the BCJ numerators for YM and NLSM. Such rules can be derived from the Laplace expansion of the corresponding reduced Pfaffian. For YM, the each one of the \((n - 2)!\) DDM form BCJ numerators contains exactly \((n - 1)!\) terms, corresponding to the increasing trees with respect to the color order. For NLSM, the number of nonzero numerators is at most \((n - 2)! - (n - 3)!\), less than those of several previous constructions.

MSC:

81T13 Yang-Mills and other gauge theories in quantum field theory
81U15 Exactly and quasi-solvable systems arising in quantum theory

References:

[1] Z. Bern, J.J.M. Carrasco and H. Johansson, New relations for gauge-theory amplitudes, Phys. Rev.D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].
[2] Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative quantum gravity as a double copy of gauge theory, Phys. Rev. Lett.105 (2010) 061602 [arXiv:1004.0476] [INSPIRE]. · doi:10.1103/PhysRevLett.105.061602
[3] F. Cachazo, S. He and E.Y. Yuan, Scattering equations and Kawai-Lewellen-Tye orthogonality, Phys. Rev.D 90 (2014) 065001 [arXiv:1306.6575] [INSPIRE].
[4] F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles in arbitrary dimensions, Phys. Rev. Lett.113 (2014) 171601 [arXiv:1307.2199] [INSPIRE]. · doi:10.1103/PhysRevLett.113.171601
[5] F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles: scalars, gluons and gravitons, JHEP07 (2014) 033 [arXiv:1309.0885] [INSPIRE]. · Zbl 1391.81198 · doi:10.1007/JHEP07(2014)033
[6] F. Cachazo, S. He and E.Y. Yuan, Einstein-Yang-Mills scattering amplitudes from scattering equations, JHEP01 (2015) 121 [arXiv:1409.8256] [INSPIRE]. · Zbl 1388.81917 · doi:10.1007/JHEP01(2015)121
[7] F. Cachazo, S. He and E.Y. Yuan, Scattering equations and matrices: from Einstein to Yang-Mills, DBI and NLSM, JHEP07 (2015) 149 [arXiv:1412.3479] [INSPIRE]. · Zbl 1388.83196 · doi:10.1007/JHEP07(2015)149
[8] S.G. Naculich, Scattering equations and virtuous kinematic numerators and dual-trace functions, JHEP07 (2014) 143 [arXiv:1404.7141] [INSPIRE]. · Zbl 1333.83021 · doi:10.1007/JHEP07(2014)143
[9] R. Kleiss and H. Kuijf, Multi-gluon cross-sections and five jet production at hadron colliders, Nucl. Phys.B 312 (1989) 616 [INSPIRE]. · doi:10.1016/0550-3213(89)90574-9
[10] V. Del Duca, L.J. Dixon and F. Maltoni, New color decompositions for gauge amplitudes at tree and loop level, Nucl. Phys.B 571 (2000) 51 [hep-ph/9910563] [INSPIRE].
[11] R. Monteiro and D. O’Connell, The kinematic algebras from the scattering equations, JHEP03 (2014) 110 [arXiv:1311.1151] [INSPIRE]. · Zbl 1333.81421 · doi:10.1007/JHEP03(2014)110
[12] N.E.J. Bjerrum-Bohr, J.L. Bourjaily, P.H. Damgaard and B. Feng, Analytic representations of Yang-Mills amplitudes, Nucl. Phys.B 913 (2016) 964 [arXiv:1605.06501] [INSPIRE]. · Zbl 1349.81135 · doi:10.1016/j.nuclphysb.2016.10.012
[13] N.E.J. Bjerrum-Bohr, J.L. Bourjaily, P.H. Damgaard and B. Feng, Manifesting color-kinematics duality in the scattering equation formalism, JHEP09 (2016) 094 [arXiv:1608.00006] [INSPIRE]. · Zbl 1390.83090 · doi:10.1007/JHEP09(2016)094
[14] C.S. Lam and Y.-P. Yao, Evaluation of the Cachazo-He-Yuan gauge amplitude, Phys. Rev.D 93 (2016) 105008 [arXiv:1602.06419] [INSPIRE].
[15] F. Teng and B. Feng, Expanding Einstein-Yang-Mills by Yang-Mills in CHY frame, arXiv:1703.01269 [INSPIRE]. · Zbl 1396.81138
[16] C.-H. Fu, Y.-J. Du, R. Huang and B. Feng, Expansion of Einstein-Yang-Mills amplitude, arXiv:1702.08158 [INSPIRE]. · Zbl 1382.83010
[17] R. Huang, Y.-J. Du and B. Feng, Understanding the cancelation of double poles in the Pfaffian of CHY-formulism, arXiv:1702.05840 [INSPIRE]. · Zbl 1380.81215
[18] H. Johansson and A. Ochirov, Color-kinematics duality for QCD amplitudes, JHEP01 (2016) 170 [arXiv:1507.00332] [INSPIRE]. · Zbl 1390.81697 · doi:10.1007/JHEP01(2016)170
[19] M. Chiodaroli, M. Günaydin, H. Johansson and R. Roiban, Scattering amplitudes in N = 2 Maxwell-Einstein and Yang-Mills/Einstein supergravity, JHEP01 (2015) 081 [arXiv:1408.0764] [INSPIRE]. · Zbl 1388.83772 · doi:10.1007/JHEP01(2015)081
[20] M. Chiodaroli, M. Günaydin, H. Johansson and R. Roiban, Spontaneously broken Yang-Mills-Einstein supergravities as double copies, arXiv:1511.01740 [INSPIRE]. · Zbl 1380.83279
[21] M. Chiodaroli, M. Günaydin, H. Johansson and R. Roiban, Complete construction of magical, symmetric and homogeneous N = 2 supergravities as double copies of gauge theories, Phys. Rev. Lett.117 (2016) 011603 [arXiv:1512.09130] [INSPIRE]. · doi:10.1103/PhysRevLett.117.011603
[22] C. Cheung and C.-H. Shen, Symmetry and action for flavor-kinematics duality, Phys. Rev. Lett.118 (2017) 121601 [arXiv:1612.00868] [INSPIRE]. · doi:10.1103/PhysRevLett.118.121601
[23] M. Chiodaroli, M. Günaydin, H. Johansson and R. Roiban, Explicit formulae for Yang-Mills-Einstein amplitudes from the double copy, arXiv:1703.00421 [INSPIRE]. · Zbl 1380.83280
[24] N. Arkani-Hamed, L. Rodina and J. Trnka, Locality and unitarity from singularities and gauge invariance, arXiv:1612.02797 [INSPIRE].
[25] F. Cachazo, P. Cha and S. Mizera, Extensions of theories from soft limits, JHEP06 (2016) 170 [arXiv:1604.03893] [INSPIRE]. · Zbl 1388.81203 · doi:10.1007/JHEP06(2016)170
[26] Y.-J. Du and C.-H. Fu, Explicit BCJ numerators of nonlinear sigma model, JHEP09 (2016) 174 [arXiv:1606.05846] [INSPIRE]. · Zbl 1390.81321 · doi:10.1007/JHEP09(2016)174
[27] J.J.M. Carrasco, C.R. Mafra and O. Schlotterer, Abelian Z-theory: NLSM amplitudes and α′-corrections from the open string, arXiv:1608.02569 [INSPIRE]. · Zbl 1380.83251
[28] H. Kawai, D.C. Lewellen and S.-H. Henry Tye, A relation between tree amplitudes of closed and open strings, Nucl. Phys.B 269 (1986) 1 [INSPIRE]. · doi:10.1016/0550-3213(86)90362-7
[29] Z. Bern, L.J. Dixon, D.C. Dunbar, M. Perelstein and J.S. Rozowsky, On the relationship between Yang-Mills theory and gravity and its implication for ultraviolet divergences, Nucl. Phys.B 530 (1998) 401 [hep-th/9802162] [INSPIRE]. · doi:10.1016/S0550-3213(98)00420-9
[30] N.E.J. Bjerrum-Bohr, P.H. Damgaard, B. Feng and T. Sondergaard, Gravity and Yang-Mills amplitude relations, Phys. Rev.D 82 (2010) 107702 [arXiv:1005.4367] [INSPIRE]. · Zbl 1291.81230
[31] N.E.J. Bjerrum-Bohr, P.H. Damgaard, B. Feng and T. Sondergaard, New identities among gauge theory amplitudes, Phys. Lett.B 691 (2010) 268 [arXiv:1006.3214] [INSPIRE]. · doi:10.1016/j.physletb.2010.07.002
[32] N.E.J. Bjerrum-Bohr, P.H. Damgaard, B. Feng and T. Sondergaard, Proof of gravity and Yang-Mills amplitude relations, JHEP09 (2010) 067 [arXiv:1007.3111] [INSPIRE]. · Zbl 1291.81230 · doi:10.1007/JHEP09(2010)067
[33] N.E.J. Bjerrum-Bohr, P.H. Damgaard, T. Sondergaard and P. Vanhove, The momentum kernel of gauge and gravity theories, JHEP01 (2011) 001 [arXiv:1010.3933] [INSPIRE]. · Zbl 1214.81145 · doi:10.1007/JHEP01(2011)001
[34] R. Monteiro and D. O’Connell, The kinematic algebra from the self-dual sector, JHEP07 (2011) 007 [arXiv:1105.2565] [INSPIRE]. · Zbl 1298.81401 · doi:10.1007/JHEP07(2011)007
[35] C.R. Mafra, O. Schlotterer and S. Stieberger, Explicit BCJ numerators from pure spinors, JHEP07 (2011) 092 [arXiv:1104.5224] [INSPIRE]. · Zbl 1298.81319 · doi:10.1007/JHEP07(2011)092
[36] C.R. Mafra and O. Schlotterer, Berends-Giele recursions and the BCJ duality in superspace and components, JHEP03 (2016) 097 [arXiv:1510.08846] [INSPIRE]. · Zbl 1388.81581 · doi:10.1007/JHEP03(2016)097
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.