×

Mixed and stabilized finite element methods for the obstacle problem. (English) Zbl 1378.65135

Summary: We discretize the Lagrange multiplier formulation of the obstacle problem by mixed and stabilized finite element methods. A priori and a posteriori error estimates are derived and numerically verified.

MSC:

65K15 Numerical methods for variational inequalities and related problems
49J40 Variational inequalities
49M15 Newton-type methods

References:

[1] I. Babuška, {\it Error-bounds for finite element method}, Numer. Math., 16 (1971), pp. 322-333. · Zbl 0214.42001
[2] I. Babuška, {\it The finite element method with Lagrangian multipliers}, Numer. Math., 20 (1973), pp. 179-192. · Zbl 0258.65108
[3] L. Banz and A. Schröder, {\it Biorthogonal basis functions in hp-adaptive FEM for elliptic obstacle problems}, Comput. Math. Appl., 70 (2015), pp. 1721-1742. · Zbl 1443.65308
[4] L. Banz and E. P. Stephan, {\it A posteriori error estimates of \(hp\)-adaptive IPDG-FEM for elliptic obstacle problems}, Appl. Numer. Math., 76 (2014), pp. 76-92. · Zbl 1288.65098
[5] M. Benzi, G. H. Golub, and J. Liesen, {\it Numerical solution of saddle point problems}, Acta Numer., 14 (2005), pp. 1-137. · Zbl 1115.65034
[6] D. Braess, {\it A posteriori error estimators for obstacle problems–another look}, Numer. Math., 101 (2005), pp. 415-421. · Zbl 1118.65068
[7] D. Braess, {\it Finite Elements: Theory, Fast Solvers, and Applications in Elasticity Theory}, 3rd ed., Cambridge University Press, Cambridge, UK, 2007. · Zbl 1180.65146
[8] H. R. Brezis and G. Stampacchia, {\it Sur la régularité de la solution d’inéquations elliptiques}, Bull. Soc. Math. France, 96 (1968), pp. 153-180. · Zbl 0165.45601
[9] F. Brezzi, {\it On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers}, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge, 8 (1974), pp. 129-151. · Zbl 0338.90047
[10] F. Brezzi, W. W. Hager, and P.-A. Raviart, {\it Error estimates for the finite element solution of variational inequalities}, Numer. Math., 28 (1977), pp. 431-443. · Zbl 0369.65030
[11] F. Brezzi, W. W. Hager, and P.-A. Raviart, {\it Error estimates for the finite element solution of variational inequalities. II. Mixed methods}, Numer. Math., 31 (1978/79), pp. 1-16. · Zbl 0427.65077
[12] F. Brezzi and J. Pitkäranta, {\it On the stabilization of finite element approximations of the Stokes equations}, in Efficient Solutions of Elliptic Systems (Kiel, 1984), Notes Numer. Fluid Mech. 10, Friedrich Vieweg, Braunschweig, 1984, pp. 11-19. · Zbl 0552.76002
[13] M. Bürg and A. Schröder, {\it A posteriori error control of \(hp\)-finite elements for variational inequalities of the first and second kind}, Comput. Math. Appl., 70 (2015), pp. 2783-2803. · Zbl 1443.65314
[14] E. Burman, P. Hansbo, M. G. Larson, and R. Stenberg, {\it Galerkin least squares finite element method for the obstacle problem}, Comput. Methods Appl. Mech. Engrg., 313 (2016), pp. 362-374. · Zbl 1439.74395
[15] L. Caffarelli, {\it The obstacle problem revisited}, J. Fourier Anal. Appl., 4-5 (1998), pp. 383-402. · Zbl 0928.49030
[16] F. Chouly and P. Hild, {\it A Nitsche-based method for unilateral contact problems: Numerical analysis}, SIAM J. Numer. Anal., 51 (2013), pp. 1295-1307. · Zbl 1268.74033
[17] P. Clément, {\it Approximation of finite element functions using local regularization}, RAIRO Numer. Anal., 9 (1975), pp. 77-84. · Zbl 0368.65008
[18] L. C. Evans, {\it An Introduction to Stochastic Differential Equations}, AMS, Providence, RI, 2013. · Zbl 1416.60002
[19] R. S. Falk, {\it Error estimates for the approximation of a class of variational inequalities}, Math. Comp., 28 (1974), pp. 963-971. · Zbl 0297.65061
[20] L. P. Franca and R. Stenberg, {\it Error analysis of Galerkin least squares methods for the elasticity equations}, SIAM J. Numer. Anal., 28 (1991), pp. 1680-1697. · Zbl 0759.73055
[21] A. Friedman, {\it Variational Principles and Free-Boundary Problems}, Pure Appl. Math. John Wiley & Sons, New York, 1982. · Zbl 0564.49002
[22] R. Glowinski, {\it Numerical Methods for Nonlinear Variational Problems}, Springer-Verlag, Berlin, 1984. · Zbl 0536.65054
[23] G. H. Golub and C. F. Van Loan, {\it Matrix Computations}, 3rd ed., Johns Hopkins Stud. Math. Sci., Johns Hopkins University Press, Baltimore, MD, 1996. · Zbl 0865.65009
[24] T. Gudi, {\it A new error analysis for discontinuous finite element methods for linear elliptic problems}, Math. Comp., 79 (2010), pp. 2169-2189. · Zbl 1201.65198
[25] T. Gudi and K. Porwal, {\it A reliable residual based a posteriori error estimator for a quadratic finite element method for the elliptic obstacle problem}, Comput. Methods. Appl. Math., 15 (2015), pp. 145-160. · Zbl 1315.65057
[26] J. Haslinger, {\it Mixed formulation of elliptic variational inequalities and its approximation}, Apl. Mat., 26 (1981), pp. 462-475. · Zbl 0483.49003
[27] J. Haslinger, I. Hlaváček, and J. Nečas, {\it Numerical methods for unilateral problems in solid mechanics}, in Handbook of Numerical Analysis 4, North-Holland, Amsterdam, 1996, pp. 313-485. · Zbl 0873.73079
[28] P. Hild and Y. Renard, {\it A stabilized Lagrange multiplier method for the finite element approximation of contact problems in elastostatics}, Numer. Math., 115 (2010), pp. 101-129. · Zbl 1194.74408
[29] M. Hintermüller, K. Ito, and K. Kunisch, {\it The primal-dual active set strategy as semismooth Newton method}, SIAM J. Optim., 13 (2003), pp. 865-888. · Zbl 1080.90074
[30] I. Hlaváček, J. Haslinger, J. Nečas, and J. Lovíšek, {\it Solution of Variational Inequalities in Mechanics}, Appl. Math. Sci. 66, Springer-Verlag, New York, 1988. · Zbl 0654.73019
[31] T. J. R. Hughes and L. P. Franca, {\it A new finite element formulation for computational fluid dynamics. VII. The Stokes problem with various well-posed boundary conditions: Symmetric formulations that converge for all velocity/pressure spaces}, Comput. Methods Appl. Mech. Engrg., 65 (1987), pp. 85-96. · Zbl 0635.76067
[32] T. J. R. Hughes, L. P. Franca, and M. Balestra, {\it A new finite element formulation for computational fluid dynamics. V. Circumventing the Babuška-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations}, Comput. Methods Appl. Mech. Engrg., 59 (1986), pp. 85-99. · Zbl 0622.76077
[33] D. Kinderlehrer and G. Stampacchia, {\it An Introduction to Variational Inequalities and Their Applications}, Pure Appl. Math. 88, Academic Press, New York, 1980. · Zbl 0457.35001
[34] J.-L. Lions and G. Stampacchia, {\it Variational inequalities}, Comm. Pure Appl. Math., 20 (1967), pp. 493-519. · Zbl 0152.34601
[35] U. Mosco and G. Strang, {\it One-sided approximation and variational inequalities}, Bull. Amer. Math. Soc., 80 (1974), pp. 308-312. · Zbl 0278.35026
[36] J. Nitsche, {\it Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind}, Abh. Math. Sem. Univ. Hamburg, 36 (1971), pp. 9-15. · Zbl 0229.65079
[37] A. Petrosyan, H. Shahgholian, and N. Uraltseva, {\it Regularity of Free Boundaries in Obstacle-Type Problems}, Grad. Stud. Math. 136, AMS, Providence, RI, 2012. · Zbl 1254.35001
[38] R. Pierre, {\it Simple \(C^0\) approximations for the computation of incompressible flows}, Comput. Methods Appl. Mech. Engrg., 68 (1988), pp. 205-227. · Zbl 0628.76040
[39] J.-F. Rodrigues, {\it Obstacle Problems in Mathematical Physics}, North-Holland, Amsterdam, 1987. · Zbl 0606.73017
[40] R. Scholz, {\it Numerical solution of the obstacle problem by the penalty method}, Computing, 32 (1984), pp. 297-306. · Zbl 0528.65057
[41] A. Schröder, {\it Mixed finite element methods of higher-order for model contact problems}, SIAM J. Numer. Anal., 49 (2011), pp. 2323-2339. · Zbl 1298.74236
[42] R. Stenberg, {\it A technique for analysing finite element methods for viscous incompressible flow}, Internat. J. Numer. Methods Fluids, 11 (1990), pp. 935-948. · Zbl 0704.76017
[43] R. Stenberg, {\it On some techniques for approximating boundary conditions in the finite element method}, J. Comput. Appl. Math., 63 (1995), pp. 139-148. · Zbl 0856.65130
[44] R. Stenberg and J. Videman, {\it On the error analysis of stabilized finite element methods for the Stokes problem}, SIAM J. Numer. Anal., 53 (2015), pp. 2626-2633. · Zbl 1331.76073
[45] M. Ulbrich, {\it Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces}, MOS-SIAM Ser. Optim., SIAM, Philadelphia, 2011. · Zbl 1235.49001
[46] A. Veeser, {\it Efficient and reliable a posteriori error estimators for elliptic obstacle problems}, SIAM J. Numer. Math., 39 (2001), pp. 146-167. · Zbl 0992.65073
[47] A. Weiss and B. Wohlmuth, {\it A posteriori error estimator for obstacle problems}, SIAM J. Sci. Comput., 32 (2010), pp. 2627-2658. · Zbl 1219.65060
[48] B. Wohlmuth, {\it Variationally consistent discretization schemes and numerical algorithms for contact problems}, Acta Numer., 20 (2011), pp. 569-734. · Zbl 1432.74176
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.