×

An efficient nonclassical quadrature for the calculation of nonresonant nuclear fusion reaction rate coefficients from cross section data. (English) Zbl 1378.65069

Summary: Nonclassical quadratures based on a new set of half-range polynomials, \(T_n(x)\), orthogonal with respect to \(w(x) = e^{- x - b / \sqrt{x}}\) for \(x \in [0, \infty)\) are employed in the efficient calculation of the nuclear fusion reaction rate coefficients from cross section data. The parameter \(b = B / \sqrt{k_B T}\) in the weight function is temperature dependent and \(B\) is the Gamow factor. The polynomials \(T_n(x)\) satisfy a three term recurrence relation defined by two sets of recurrence coefficients, \(\alpha_n\) and \(\beta_n\). These recurrence coefficients define in turn the tridiagonal Jacobi matrix whose eigenvalues are the quadrature points and the weights are calculated from the first components of the eigenfunctions. For nonresonant nuclear reactions for which the astrophysical function can be expressed as a lower order polynomial in the relative energy, the convergence of the thermal average of the reactive cross section with this nonclassical quadrature is extremely rapid requiring in many cases 2–4 quadrature points. The results are compared with other libraries of nuclear reaction rate coefficient data reported in the literature.

MSC:

65D25 Numerical differentiation
81V35 Nuclear physics
Full Text: DOI

References:

[1] Atenzi, S.; Meyer-Ter-Vehn, J., The Physics of Inertial Fusion (2004), Clarendon Press: Clarendon Press Oxford
[2] Clayton, D. D., Principles of Stellar Evolution and Nucleosynthesis (1968), McGraw-Hill: McGraw-Hill New York
[3] Bosch, H. S.; Hale, G. M., Nucl. Fusion, 32, 611-631 (1992)
[4] Cyburt, R. H., Phys. Rev. D, 70, Article 023505 pp. (2004)
[5] Leonard, D. S.; Karwowski, H. J.; Brune, C. R.; Fisher, B. M.; Ludwig, E. J., Phys. Rev. C, 73, Article 045801 pp. (2006)
[6] Smith, M. S.; Kawano, L. H.; Malaney, R. A., Astrophys. J., 85, 219-247 (1993)
[7] Fields, B. D.; Olive, K. A., Nucl. Phys. A, 777, 208-225 (2006)
[8] Pizzone, R. G.; Sparta, R.; Bertulani, C. A., Astrophys. J., 786, 112 (2014)
[9] Tumino, A.; Sparta, E.; Spitaleri, C., Astrophys. J., 785, 96 (2014)
[10] Angulo, C.; Arnould, M.; Rayet, M., Nucl. Phys. A, 656, 3-183 (1999)
[11] Xu, Y.; Takahashi, K.; Goriely, S., Nucl. Phys. A, 918, 61-169 (2013)
[12] Rauscher, T.; Heger, A.; Hoffman, R. D.; Woosley, S. E., Astrophys. J., 576, 323-348 (2002)
[13] Sallaska, A. L.; Iliadis, C.; Champange, A. E.; Goriely, S.; Starrfield, S.; Timmes, F. X., Astrophys. J. Suppl. Ser., 207, 18 (2013)
[14] Cyburt, R. H.; Amthor, A. M.; Ferguson, R., Astrophys. J. Suppl. Ser., 189, 240-252 (2010)
[15] Shizgal, B. D., Comput. Theor. Chem., 1074, 178-184 (2015)
[16] Shizgal, B. D.; Chen, H., J. Chem. Phys., 107, 8051-8063 (1997)
[17] Asadchev, A.; Gordon, M. S., Comput. Phys. Commun., 183, 1563-1567 (2012)
[18] Baye, D.; Vincke, V., Phys. Rev. E, 59, 7195-7199 (1999)
[19] Chen, H.; Shizgal, B. D., J. Comput. Appl. Math., 136, 17-35 (2001) · Zbl 0988.65058
[20] Kakhiani, K.; Tsereteli, K.; Tsereteli, P., Comput. Phys. Commun., 180, 256-268 (2009) · Zbl 1198.65047
[21] Schwenke, D. W., Comput. Phys. Commun., 185, 762-763 (2014) · Zbl 1360.81024
[22] Shizgal, B., Spectral Methods in Chemistry and Physics; Application to Kinetic Theory and Quantum Mechanics (2015), Springer: Springer New York · Zbl 1327.81007
[23] Shizgal, B. D.; Chen, H., J. Chem. Phys., 104, 4137-4150 (1996)
[24] Mohankumar, N.; Kannan, T.; Kanmani, S., Comput. Phys. Commun., 168, 71-77 (2005) · Zbl 1196.81032
[25] Fukuda, H.; Katuya, M.; Alt, E. O.; Matveenko, A. V., Comput. Phys. Commun., 167, 143-150 (2005)
[26] Weber, V.; Daul, C.; Baltensperger, R., Comput. Phys. Commun., 163, 133-142 (2004) · Zbl 1196.65056
[27] Bertulani, C. A.; Hussein, M.; Muenzenberg, G., Physics of Radioactive Beams (2002), Nova Science: Nova Science Hauppage, NY
[28] Serpico, P. D.; Esposito, S.; Iocco, F.; Mangano, G.; Miele, G.; Pisanti, O., J. Cosmol. Astropart. Phys., 2004, 1-80 (2004)
[29] Ueda, M.; Sargeant, A. J.; Pato, M. P.; Hussein, M. S., Phys. Rev. C, 61, Article 045801 pp. (2000)
[30] Descouvemont, P.; Adahchour, A.; Angulo, C.; Coc, A.; Vangioni-Flam, E., At. Data Nucl. Data Tables, 88, 203-236 (2004)
[31] Gautschi, W., Acta Numer., 45-119 (1996) · Zbl 0871.65011
[32] Boyd, J. P., Chebyshev and Fourier Spectral Methods (2001), Dover: Dover New York · Zbl 0987.65122
[33] Gautschi, W., ACM Trans. Math. Software, 20, 21-82 (1994)
[34] Shizgal, B., J. Comput. Phys., 41, 309-328 (1981) · Zbl 0459.65096
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.