×

Extreme zeros in a sequence of para-orthogonal polynomials and bounds for the support of the measure. (English) Zbl 1378.42014

Considering a nontrivial probability measure \(\mu\) defined on the unit circle \(\mathbb{T}=\{ e^{i \theta } \, : \, 0 \leq \theta \leq 2 \pi \} \) and the corresponding orthonormal polynomial sequence \(\{\phi_{n} (z) \}_{n \geq 0} \), the authors review the notion of para-orthogonal polynomials on the unit circle and recall some features of the Christoffel-Darboux kernel \[ K_{n}( \varpi , z )=\displaystyle \sum_{j=0}^{n} \overline{ \phi_{j}\left( \varpi \right)} \phi_{j}(z)\, , \, \quad n \geq 0. \] Departing from important results of C. F. Bracciali et al. [Math. Comput. 85, No. 300, 1837–1859 (2016; Zbl 1336.42017)], K. Castillo et al. [J. Approx. Theory 184, 146–162 (2014; Zbl 1291.42021)], M. S. Costa et al. [J. Approx. Theory 173, 14–32 (2013; Zbl 1282.33017)] and D. K. Dimitrov and A. S. Ranga [Math. Nachr. 286, No. 17–18, 1778–1791 (2013; Zbl 1290.33008)], namely the following recurrence relation defined by real sequences \(\{c_{n}\}_{n \geq 1}\) and \(\{d_{n+1}\}_{n \geq 1}\), where \(\{d_{n+1}\}_{n \geq 1}\) is a positive chain sequence, \[ R_{n+1}(z)= [( 1+ic_{n+1})z+ ( 1-ic_{n+1}) ]R_{n}(z)-4d_{n+1}zR_{n-1}(z)\,,\;\;n \geq 0\,, \] \(R_{-1}(z)=0\,,\,\; R_{0}(z)=1,\)
which is fulfilled by a normalized \(K_{n}(1,z )\), this contribution aims to provide bounds for the extreme zeros of \(R_{n}\) in connection with the support of the measure. Several examples are developed in order to adequately convey the specifics of the given bounds.

MSC:

42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
33C47 Other special orthogonal polynomials and functions
65D20 Computation of special functions and constants, construction of tables
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)

References:

[1] Bracciali, C. F.; McCabe, J. H.; P{\'e}rez, T. E.; Sri Ranga, A., A class of orthogonal functions given by a three term recurrence formula, Math. Comp., 85, 300, 1837-1859 (2016) · Zbl 1336.42017 · doi:10.1090/mcom3041
[2] Bracciali, C. F.; Sri Ranga, A.; Swaminathan, A., Para-orthogonal polynomials on the unit circle satisfying three term recurrence formulas, Appl. Numer. Math., 109, 19-40 (2016) · Zbl 1388.42074 · doi:10.1016/j.apnum.2016.05.008
[3] Cantero, M. J.; Moral, L.; Vel{\'a}zquez, L., Measures and para-orthogonal polynomials on the unit circle, East J. Approx., 8, 4, 447-464 (2002) · Zbl 1330.42015
[4] Cantero, M. J.; Moral, L.; Vel{\'a}zquez, L., Measures on the unit circle and unitary truncations of unitary operators, J. Approx. Theory, 139, 1-2, 430-468 (2006) · Zbl 1088.42013 · doi:10.1016/j.jat.2005.11.001
[5] Castillo, K.; Costa, M. S.; Sri Ranga, A.; Veronese, D. O., A Favard type theorem for orthogonal polynomials on the unit circle from a three term recurrence formula, J. Approx. Theory, 184, 146-162 (2014) · Zbl 1291.42021 · doi:10.1016/j.jat.2014.05.007
[6] Chihara, T. S., An introduction to orthogonal polynomials, xii+249 pp. (1978), Gordon and Breach Science Publishers, New York-London-Paris · Zbl 0389.33008
[7] Costa, M. S.; Felix, H. M.; Sri Ranga, A., Orthogonal polynomials on the unit circle and chain sequences, J. Approx. Theory, 173, 14-32 (2013) · Zbl 1282.33017 · doi:10.1016/j.jat.2013.04.009
[8] Daruis, Leyla; Nj{\aa }stad, Olav; Van Assche, Walter, Para-orthogonal polynomials in frequency analysis, Rocky Mountain J. Math., 33, 2, 629-645 (2003) · Zbl 1042.94001 · doi:10.1216/rmjm/1181069970
[9] Delsarte, Philippe; Genin, Yves V., The split Levinson algorithm, IEEE Trans. Acoust. Speech Signal Process., 34, 3, 470-478 (1986) · doi:10.1109/TASSP.1986.1164830
[10] Delsarte, P.; Genin, Y., The tridiagonal approach to Szeg\H o’s orthogonal polynomials, Toeplitz linear systems, and related interpolation problems, SIAM J. Math. Anal., 19, 3, 718-735 (1988) · Zbl 0638.30037 · doi:10.1137/0519050
[11] Dimitrov, Dimitar K.; Sri Ranga, A., Zeros of a family of hypergeometric para-orthogonal polynomials on the unit circle, Math. Nachr., 286, 17-18, 1778-1791 (2013) · Zbl 1290.33008 · doi:10.1002/mana.201200181
[12] Dimitrov, D. K.; Ismail, M. E. H.; Sri Ranga, A., A class of hypergeometric polynomials with zeros on the unit circle: extremal and orthogonal properties and quadrature formulas, Appl. Numer. Math., 65, 41-52 (2013) · Zbl 1268.33007 · doi:10.1016/j.apnum.2012.11.002
[13] Erd{\'e}lyi, Tam{\'a}s; Nevai, Paul; Zhang, John; Geronimo, Jeffrey S., A simple proof of “Favard”s theorem” on the unit circle, Atti Sem. Mat. Fis. Univ. Modena, 39, 2, 551-556 (1991) · Zbl 0753.33004
[14] Geronimus, J., On the trigonometric moment problem, Ann. of Math. (2), 47, 742-761 (1946) · Zbl 0060.16903
[15] Geronimus-AMSTransl-1977 Ya. L. Geronimus, Orthogonal Polynomials, English translation of the appendix to the Russian translation of Szego’s book Szego-Book, in “Two Papers on Special Functions”, Amer. Math. Soc. Transl., Ser. 2, Vol. 108, pp. 37-130, American Mathematical Society, Providence, R.I., 1977. · Zbl 0373.42007
[16] Golinskii, L., Quadrature formula and zeros of para-orthogonal polynomials on the unit circle, Acta Math. Hungar., 96, 3, 169-186 (2002) · Zbl 1017.42014 · doi:10.1023/A:1019765002077
[17] Golinskii, Leonid; Nevai, Paul; Van Assche, Walter, Perturbation of orthogonal polynomials on an arc of the unit circle, J. Approx. Theory, 83, 3, 392-422 (1995) · Zbl 0842.42013 · doi:10.1006/jath.1995.1128
[18] Golinskii, Leonid; Nevai, Paul; Pint{\'e}r, Ferenc; Van Assche, Walter, Perturbation of orthogonal polynomials on an arc of the unit circle. II, J. Approx. Theory, 96, 1, 1-32 (1999) · Zbl 0958.42016 · doi:10.1006/jath.1998.3208
[19] Jones, William B.; Nj{\aa }stad, Olav; Thron, W. J., Moment theory, orthogonal polynomials, quadrature, and continued fractions associated with the unit circle, Bull. London Math. Soc., 21, 2, 113-152 (1989) · Zbl 0637.30035 · doi:10.1112/blms/21.2.113
[20] Ismail, Mourand E. H.; Li, Xin, Bound on the extreme zeros of orthogonal polynomials, Proc. Amer. Math. Soc., 115, 1, 131-140 (1992) · Zbl 0744.33005 · doi:10.2307/2159575
[21] Jones, William B.; Nj{\aa }stad, Olav; Thron, W. J., Moment theory, orthogonal polynomials, quadrature, and continued fractions associated with the unit circle, Bull. London Math. Soc., 21, 2, 113-152 (1989) · Zbl 0637.30035 · doi:10.1112/blms/21.2.113
[22] Mart{\'{\i }}nez-Finkelshtein, A.; McLaughlin, K. T.-R.; Saff, E. B., Szeg\H o orthogonal polynomials with respect to an analytic weight: canonical representation and strong asymptotics, Constr. Approx., 24, 3, 319-363 (2006) · Zbl 1135.42326 · doi:10.1007/s00365-005-0617-6
[23] Mart{\'{\i }}nez-Finkelshtein, A.; McLaughlin, K. T.-R.; Saff, E. B., Asymptotics of orthogonal polynomials with respect to an analytic weight with algebraic singularities on the circle, Int. Math. Res. Not., Art. ID 91426, 43 pp. (2006) · Zbl 1135.42325 · doi:10.1155/IMRN/2006/91426
[24] Simon, Barry, Orthogonal Polynomials on the Unit Circle. Part 1, American Mathematical Society Colloquium Publications 54, xxvi+466 pp. (2005), American Mathematical Society, Providence, RI · Zbl 1082.42020
[25] Simon, Barry, Orthogonal Polynomials on the Unit Circle. Part 2, American Mathematical Society Colloquium Publications 54, i-xxii and 467-1044 (2005), American Mathematical Society, Providence, RI · Zbl 1082.42021 · doi:10.1090/coll/054.2/01
[26] Simon, Barry, Szeg\H o’s Theorem and Its Descendants, M. B. Porter Lectures, xii+650 pp. (2011), Princeton University Press, Princeton, NJ · Zbl 1230.33001
[27] Sinclair, Christopher D.; Vaaler, Jeffrey D., Self-inversive polynomials with all zeros on the unit circle. Number Theory and Polynomials, London Math. Soc. Lecture Note Ser. 352, 312-321 (2008), Cambridge Univ. Press, Cambridge · Zbl 1334.11017 · doi:10.1017/CBO9780511721274.020
[28] Sri Ranga, A., Szeg\H o polynomials from hypergeometric functions, Proc. Amer. Math. Soc., 138, 12, 4259-4270 (2010) · Zbl 1250.42082 · doi:10.1090/S0002-9939-2010-10592-0
[29] Szeg{\H{o}}, G{\'a}bor, Orthogonal Polynomials, xiii+432 pp. (1975), American Mathematical Society, Providence, R.I. · Zbl 0305.42011
[30] Wall, H. S., Analytic Theory of Continued Fractions, xiii+433 pp. (1948), D. Van Nostrand Company, Inc., New York, NY · Zbl 0035.03601
[31] Wong, Manwah Lilian, First and second kind paraorthogonal polynomials and their zeros, J. Approx. Theory, 146, 2, 282-293 (2007) · Zbl 1116.33012 · doi:10.1016/j.jat.2006.12.007
[32] Zhedanov, Alexei, On some classes of polynomials orthogonal on arcs of the unit circle connected with symmetric orthogonal polynomials on an interval, J. Approx. Theory, 94, 1, 73-106 (1998) · Zbl 0921.42017 · doi:10.1006/jath.1998.3179
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.