×

Comparative studies for the fractional optimal control in transmission dynamics of west nile virus. (English) Zbl 1377.37119

Summary: In this paper, optimal control for a novel West Nile virus (WNV) model of fractional order derivative is presented. The proposed model is governed by a system of fractional differential equations (FDEs), where the fractional derivative is defined in the Caputo sense. An optimal control problem is formulated and studied theoretically using the Pontryagin maximum principle. Two numerical methods are used to study the fractional-order optimal control problem. The methods are, the iterative optimal control method (OCM) and the generalized Euler method (GEM). Positivity, boundedness and convergence of the IOCM are studied. Comparative studies between the proposed methods are implemented, it is found that the IOCM is better than the GEM.

MSC:

37N25 Dynamical systems in biology
49J15 Existence theories for optimal control problems involving ordinary differential equations
26A33 Fractional derivatives and integrals
92D30 Epidemiology
Full Text: DOI

References:

[1] Agrawal, O. P., A formulation and numerical scheme for fractional optimal control problems, J. Vibr. Control14 (2008) 1291-1299. · Zbl 1229.49045
[2] Arenas, A. J., González-Parra, G. and Chen-Charpentier, B. M., Construction of nonstandard finite difference schemes for the SI and SIR epidemic models of fractional order, Math. Comput. Simulat.121 (2016) 48-63. · Zbl 1519.92235
[3] Blayneh, K. W., Gumel, A. B., Lenhart, S. and Clayton, T., Backward bifurcation and optimal control in transmission dynamics of West Nile virus, Bull. Math. Biol.72 (2010) 1006-1028. · Zbl 1191.92024
[4] Bowman, C., Gumel, A. B., van den Driessche, P., Wu, J. and Zhu, H., A mathematical model for assessing control strategies against West Nile virus, Bull. Math. Biol.67 (2005) 1107-1133. · Zbl 1334.92392
[5] Campbell, G. L., Marfin, A. A., Lanciotti, R. S. and Gubler, D. J., West Nile virus: Reviews, Lancet Infect. Diseases2 (2002) 519-529.
[6] Center for Disease Control and Prevention (CDC), Weekly Update: West Nile Virus Activity-United States, Morbidity and Mortality Weekly Report (MMWR), 50 (2002) 1061-1063.
[7] Center for Disease Control and Prevention (CDC), West Nile Virus Disease Cases and Deaths Reported to CDC by Year and Clinical Presentation, 1999-2015, http://www.cdc.gov/westnile/resources/pdfs/data/1-wnv-disease-cases-by-year_1999-2015_07072016.pdf.
[8] Center for Disease Control and Prevention (CDC), West Nile Virus: Virus History and Distribution (2002a), http://www.cdc.gov/ncidod/dvbid/westnile/background.html.
[9] Chowers, M. Y.et al., Clinical characteristics of the West Nile fever outbreak, Israel, 2000, Emerg. Infect. Diseases7 (2001) 686-691.
[10] Cruz-Pacheco, G., Esteva, L., Montano-Hirose, J. and Vargas, D., Modelling the dynamics of West Nile virus, Bull. Math. Biol.67 (2005) 1157-1172. · Zbl 1334.92397
[11] Keyanpour, M. and Azizsefat, M., Numerical solution of optimal control problems by an iterative scheme, Adv. Model. Optim.13 (2011) 25-37. · Zbl 1332.65086
[12] Komar, N., Langevin, S., Hinten, S., Nemeth, N. and Edwards, E., Experiment infection of North American birds with the New York 1999 strain of West Nile virus, Emerg. Infect. Diseases9(3) (2003) 311-322.
[13] Lewis, M., Renclawowicz, J. and van den Driessche, P., Traveling waves and spread rates for a West Nile virus model, Bull. Math. Biol.66 (2006) 3-23. · Zbl 1334.92414
[14] Lewis, M., Renclawowicz, J., van den Driessche, P. and Wonhman, M., A comparison of continuous and discrete-time West Nile virus models, Bull. Math. Biol.68 (2006) 491-509. · Zbl 1334.92413
[15] Liu, F., Meerschaert, M. M., McGough, R., Zhuang, P. and Liu, Q., Numerical methods for solving the multi-term time fractional wave equations, Fract. Calc. Appl. Anal.16(1) (2013) 9-25. · Zbl 1312.65138
[16] Nash, D.et al., The outbreak of West Nile virus infection in the New York city area in 1999, New England J. Med.344 (2001) 1807-1814.
[17] Odibat, Z. and Momani, S., An algorithm for the numerical solution of differential equations of fractional order, J. Appl. Math. Inf. Sci.26 (2008) 15-27. · Zbl 1133.65116
[18] Oldham, K. B. and Spanier, J., The Fractional Calculus (Academic Press, New York, 1974). · Zbl 0428.26004
[19] Peter, L. R. and Marfin, A. A., West Nile virus: A primer for the clinician, Ann. Intern. Med.137 (2002) 173-179.
[20] Podlubnny, I., Fractional Differential Equations (Academic Press, New York, 1999). · Zbl 0924.34008
[21] Pontryagin, L., Boltyanskii, V., Gamkrelidze, R. and Mishchenko, E., The Mathematical Theory of Optimal Process, Vol. 4 (Gordon and Breach, New York, 1986).
[22] Scherer, R., Kalla, S., Tang, Y. and Huang, J., The Grunwald-Letnikov method for fractional differential equations, Comput. Math. Appl.62 (2011) 902-917. · Zbl 1228.65121
[23] Smithburn, K. C., Hughes, T. P., Burke, A. W. and Paul, J. H., A neurotropic virus isolated from the blood of native of Uganda, Amer. J. Trop. Med. Hygiene20 (1940) 471-492.
[24] Sokolov, I. M., Chechkin, A. Q. and Klafter, J., Distributed-order fractional kinetics, Acta Phys. Polon35 (2004) 1323-1341.
[25] Sweilam, N. H., Khader, M. M., Mahdy, A. M. S. and Moniem, N. K. Abdel, Numerical simulation for the fractional SIRC model and influenza A, J. Appl. Math. Inf. Sci.8 (2014) 1029-1036.
[26] Sweilam, N. H. and Al-Ajami, T. M., Legendre spectral-collocation method for solving some types of fractional optimal control problems, J. Adv. Res.6 (2015) 393-403.
[27] Sweilam, N. H., Al-Ajmi, T. M. and Hoppe, R. H. W., Numerical studies for some types of fractional optimal control problems, Sci. World J.2013 (2013) 1-9.
[28] Sweilam, N. H., Khader, M. M. and Mahdy, A. M. S., Numerical study for the fractional differential equations generated by optimization problem using Chebyshev collocation method and FDM, J. Appl. Math. Inf. Sci.7 (2013) 2011-2018.
[29] Sweilam, N. H. and Al-Mekhlafi, S. M., Comparative study for multi-strain tuberculosis (TB) model of fractional order, Appl. Math. Inf. Sci.10 (2016) 1403-1413. · Zbl 1353.49029
[30] Sweilam, N. H. and Al-Mekhlafi, S. M., On the optimal control for fractional multi-strain TB model, Optim. Control Appl. Meth.37(6) (2016) 1355-1374. · Zbl 1353.49029
[31] Sweilam, N. H. and Al-Mekhlafi, S. M., Legendre spectral-collocation method for solving fractional optimal control of HIV infection of \(Cd4{}^+\) T-cells mathematical model, J. Def. Model. Simulat. Appl. Meth. Technol.2016 (2016) 1-11.
[32] Thomas, M. and Urena, B., A model describing the evolution of West Nile-like encephalitis in New York city, Math. Comput. Model.34 (2001) 771-781. · Zbl 0999.92025
[33] van den Driessche, P. and Watmough, J., Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission, Math. Biosci.180 (2002) 29-48. · Zbl 1015.92036
[34] Wonhman, M., de-Camino-Beck, T. and Lewis, M., An epidemiological model for West Nile virus: Invasion analysis and control applications, Proc. Roy. Soc. B, Biol. Sci.271 (2004) 501-507.
[35] Wonhman, M., Lewis, M., Rencawowicz, J. and van den Driessche, P., Transmission assumptions generate conflicting predictions in host-vector disease models: A case study in West Nile virus, Ecol. Lett.9 (2006) 706-725.
[36] Yu, Q., Liu, F., Turner, I. and Burrage, K., Numerical simulation of fractional Bloch equations, J. Comput. Appl. Math.255 (2014) 635-651. · Zbl 1291.65224
[37] Zeng, F., Li, C., Liu, F. and Turner, I., Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy, SIAM J. Sci. Comput. (SISC)37(1) (2015) 55-78. · Zbl 1334.65162
[38] Zeng, F., Li, C. and Liu, F., High-order explicit-implicit numerical methods for nonlinear anomalous diffusion equations, Eur. Phys. J.222 (2013) 1885-1900.
[39] Zeng, F., Li, C., Liu, F. and Turner, I., The use of finite difference/element approaches for solving the time-fractional subdiffusion equation, SIAM J. Sci. Comput. (SISC)35(6) (2013) A2976-A3000. · Zbl 1292.65096
[40] Zheng, M., Liu, F., Ahn, V. and Turner, I., A high-order spectral method for the multi-term time-fractional diffusion equations, Appl. Math. Model.40(7-8) (2016) 4970-4985. · Zbl 1459.65205
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.