×

Lie point symmetry analysis of a second order differential equation with singularity. (English) Zbl 1377.34045

A primary motivation of this work is to analyze the Lie point symmetries of the second order differential equation with cubic singularity \[ \ddot{x}(t)+p(t)x(t)=qx(t)^{-3}+g(t)x(t)^m, \] where \(q, m\) are constants and \(p(\cdot), g(\cdot)\) are arbitrary functions of \(t\). Such equation arises in several applications coming from classical and quantum mechanics and geometry.
The first objective is to identify a class of equations above invariant under a \(1\)-dimensional subgroup of the symmetry group of the familiar Ermakov-Pinney equation. Under this condition, the given equation can be reduced to an equivalent autonomous equation by means of a canonical transformation. A second objective is to explore a generalization of the associated Ermakov-Lewis invariant.

MSC:

34C14 Symmetries, invariants of ordinary differential equations
34C20 Transformation and reduction of ordinary differential equations and systems, normal forms

References:

[1] Ai, J.; Chou, K.; Wei, J., Self-similar solutions for the anisotropic affine curve shortening problem, Calc. Var. Partial Differential Equations, 13, 3, 311-337 (2001) · Zbl 1086.35035
[2] Belmonte-Beitia, J.; Pérez-García, V. M.; Vekslerchik, V.; Torres, P. J., Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities, Phys. Rev. Lett., 98, Article 064102 pp. (Feb 2007)
[3] Belmonte-Beitia, J.; Pérez-García, V. M.; Vekslerchik, V.; Torres, P. J., Lie symmetries, qualitative analysis and exact solutions of nonlinear Schrödinger equations with inhomogeneous nonlinearities, Discrete Contin. Dyn. Syst. Ser. B, 9, 2, 221-233 (2008) · Zbl 1147.35093
[4] Cariñena, J. F.; Guha, P.; de Lucas, J., A quasi-Lie schemes approach to second-order Gambier equations, SIGMA, 9, Article 026 pp. (March 2013), 23 pages · Zbl 1279.34015
[5] Clarkson, P. A.; Olver, P. J., Symmetry and the Chazy equation, J. Differential Equations, 124, 1, 225-246 (1996) · Zbl 0842.34010
[6] de Lucas, J.; Sardón, C., On Lie systems and Kummer-Schwarz equations, J. Math. Phys., 54, Article 033505 pp. (December 2012) · Zbl 1312.34032
[7] Dohmen, C.; Giga, Y.; Mizoguchi, N., Existence of selfsimilar shrinking curves for anisotropic curvature flow equations, Calc. Var. Partial Differential Equations, 4, 2, 103-119 (1996) · Zbl 0847.34042
[8] Garcia-Ripol, J. J.; Perez-García, V. M.; Torres, P., Extended parametric resonances in nonlinear Schrödinger systems, Phys. Rev. Lett., 83, 1715-1718 (Aug 1999)
[9] Krause, J.; Michel, L., Equationes différentielles linéaires d’ordre \(n > 2\) ayant une algébre de Lie symétrie de dimension \(n + 4\), C. R. Acad. Sci. Paris I, 307, 905-910 (1988) · Zbl 0662.34010
[10] Leach, P. G.L.; Andriopoulos, S. K., The Ermakov equation: a commentary, Appl. Anal. Discrete Math., 2, 146-157 (2008) · Zbl 1199.34006
[11] Lewis, H. R., Classical and quantum systems with time-dependent harmonic-oscillator-type hamiltonians, Phys. Rev. Lett., 18, 510-512 (Mar 1967)
[12] Lewis, H. R., Class of exact invariants for classical and quantum time-dependent harmonic oscillators, J. Math. Phys., 9, 11, 1976-1986 (1968) · Zbl 0167.52501
[13] Mahomed, F. M.; Leach, P. G., Symmetry Lie algebras of \(n\) th order ordinary differential equations, J. Math. Anal. Appl., 151, 1, 80-107 (1990) · Zbl 0719.34018
[14] Mellin, C. M.; Mahomed, F. M.; Leach, P. G.L., Solution of generalized Emden-Fowler equations with two symmetries, Int. J. Non-Linear Mech., 29, 4, 529-538 (1994) · Zbl 0812.34001
[15] Pérez-García, V. M.; Torres, P. J.; Montesinos, G., The method of moments for nonlinear Schrödinger equations: theory and applications, SIAM J. Appl. Math., 67, 4, 990-1015 (2007) · Zbl 1127.35061
[16] Pinney, E., The nonlinear differential equation \(y'' + p(x) y + c y^{- 3} = 0\), Proc. Amer. Math. Soc., 1, 681 (1950) · Zbl 0038.24303
[17] Ranganathan, P. V., Solutions of some classes of second order non-linear ordinary differential equations, Int. J. Non-Linear Mech., 23, 5/6, 421-429 (1988) · Zbl 0761.34013
[18] Reid, J. L.; Ray, J. R., Lie symmetries, nonlinear equations of motion and new Ermakov systems, J. Phys. A: Math. Gen., 15, 9, 2751 (1982) · Zbl 0511.70027
[19] Torres, P. J., Modulated amplitude waves with non-trivial phase in quasi-1d inhomogeneous Bose-Einstein condensates, Phys. Lett. A, 378, 45, 3285-3288 (2014) · Zbl 1301.35158
[20] Umanskiy, V., On solvability of two-dimensional \(L_p\)-Minkowski problem, Adv. Math., 180, 1, 176-186 (2003) · Zbl 1048.52001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.