×

Bounded rank-1 transformations. (English) Zbl 1376.37006

Summary: We define the notion of canonical boundedness among rank-1 transformations and use it to characterize the class of bounded rank-1 transformations with trivial centralizer. We also explicitly characterize totally ergodic rank-1 transformations with bounded cutting parameter. Together with a recent result of V. V. Ryzhikov [“Minimal self-joinings, bounded constructions, and weak closure of ergodic actions”, Preprint, arXiv:1212.2602], our results provide a simple procedure for determining, purely in terms of the cutting and spacer parameters for the transformation, whether a bounded rank-1 transformation has minimal self-joinings of all orders.

MSC:

37A25 Ergodicity, mixing, rates of mixing
54H05 Descriptive set theory (topological aspects of Borel, analytic, projective, etc. sets)

References:

[1] E. H. el Abdalaoui, A. Nogueira, and T. de la Rue, Weak mixing of maps with bounded cutting parameter, New York J. Math., 11 (2005), 81-87. · Zbl 1134.37300
[2] O. Ageev, On asymmetry of the future and the past for limit self-joinings, Proc. Amer. Math. Soc., 131 (2003), 2053-2062. · Zbl 1024.37003 · doi:10.1090/S0002-9939-03-06796-0
[3] A. D. Bjork, Criteria for rank-one transformations to be weakly mixing, and the generating property, Ph. D. dissertation, University of California, Irvine, 2009.
[4] J. Bourgain, On the correlation of the Möbius function with rand om rank-one systems, J. Anal. Math., 120 (2013), 105-130. · Zbl 1358.37017 · doi:10.1007/s11854-013-0016-z
[5] R. V. Chacon, Weakly mixing transformations which are not strongly mixing, Proc. Amer. Math. Soc., 22 (1969), 559-562. · Zbl 0186.37203 · doi:10.1090/S0002-9939-1969-0247028-5
[6] D. Creutz and C. E. Silva, Mixing on a class of rank-one transformations, Ergodic Theory Dynam. Systems, 24 (2004), 407-440. · Zbl 1066.37003 · doi:10.1017/S0143385703000464
[7] A. del Junco, A simple measure-preserving transformation with trivial centralizer, Pacific J. Math. 79 (1978), 357-362. · Zbl 0368.28019 · doi:10.2140/pjm.1978.79.357
[8] A. del Junco, M. Rahe, and L. Swanson, Chacon’s automorphism has minimal self joinings, J. Anal. Math., 27 (1980), 276-284. · Zbl 0445.28014 · doi:10.1007/BF02797688
[9] A. del Junco and D. Rudolph, A rank one rigid simple prime map, Ergodic Theory Dynam. Systems 7 (1987), 229-247. · Zbl 0634.54020
[10] S. Ferenczi, Systems of finite rank, Colloq. Math., 73 (1997), 35-65. · Zbl 0883.28014
[11] S. Gao and A. Hill, Topological isomorphism for rank-one systems, J. Anal. Math., 128 (2016), 1-49. · Zbl 1337.54029 · doi:10.1007/s11854-016-0001-4
[12] S. Kalikow, Twofold mixing implies threefold mixing for rank-one transformations, Ergodic Theory Dynam. Systems, 4 (1984), 237-259. · Zbl 0552.28016 · doi:10.1017/S014338570000242X
[13] J. King, The commutant is the weak closure of the powers, for rank-one transformations, Ergodic Theory Dynam. Systems, 6 (1986), 363-384. · Zbl 0595.47005 · doi:10.1017/S0143385700003552
[14] J. King, Joining-rank and the structure of finite rank mixing transformations, J. Anal. Math., 51 (1988), 182-227. · Zbl 0665.28010 · doi:10.1007/BF02791123
[15] J. King and J-P. Thouvenot, A canonical structure theorem for finite joining-rank maps, J. Anal. Math. 56 (1991), 211-230. · Zbl 0735.28010 · doi:10.1007/BF02820465
[16] D. S. Ornstein, On the root problem in ergodic theory, Proceedings of the Sixth Berkeley Sympposium on Mathematical Statistics and Probability, Vol. II, Univ. California Press, Berkeley, CA, 1972, pp. 347-356. · Zbl 0262.28009
[17] V. V. Ryzhikov, Minimal Self-joinings, bounded constructions, and weak closure of ergodic actions, arXiv:1212.2602v2[math DS].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.