×

Gambling, computational information and encryption security. (English) Zbl 1375.94131

Lehmann, Anja (ed.) et al., Information theoretic security. 8th international conference, ICITS 2015, Lugano, Switzerland, May 2–5, 2015. Proceedings. Cham: Springer (ISBN 978-3-319-17469-3/pbk; 978-3-319-17470-9/ebook). Lecture Notes in Computer Science 9063, 141-158 (2015).
Summary: We revisit the question, originally posed by A.C.-C. Yao [Theory and applications of trapdoor functions (Extended abstract). In: 23rd Annual Symposium on Foundations of Computer Science, FOCS 1982, Chicago, Illinois, USA, 1982, 80–91 (1982)], of whether encryption security may be characterized using computational information. Yao provided an affirmative answer, using a compression-based notion of computational information to give a characterization equivalent to the standard computational notion of semantic security. We give two other equivalent characterizations. The first uses a computational formulation of Kelly’s (1957) model for “gambling with inside information” [J. L. Kelly jun., A new interpretation of information rate. Bell. Syst. Tech. J. 35, 917–926 (1956)], leading to an encryption notion which is similar to Yao’s but where encrypted data is used by an adversary to place bets maximizing the rate of growth of total wealth over a sequence of independent, identically distributed events. The difficulty of this gambling task is closely related to Vadhan and Zheng’s (2011) notion of KL-hardness [S. Vadhan and C. J. Zheng, Proceedings of the 44th annual ACM symposium on theory of computing, STOC 2012, New York, NY: ACM, 817–836 (2012; Zbl 1286.65008), Electronic Colloquium on Computational Complexity (ECCC) 18, 141 (2011)], which in certain cases is equivalent to a conditional form of the pseudoentropy introduced by J. Håstad et. al. [SIAM J. Comput. 28, No. 4, 1364–1396 (1999; Zbl 0940.68048)]. Using techniques introduced to prove this equivalence, we are also able to give a characterization of encryption security in terms of conditional pseudoentropy. Finally, we will reconsider the gambling model with respect to “risk-neutral” adversaries in an attempt to understand whether assumptions about the rationality of adversaries may impact the level of security achieved by an encryption scheme.
For the entire collection see [Zbl 1321.94009].

MSC:

94A60 Cryptography
91A60 Probabilistic games; gambling
94A17 Measures of information, entropy
Full Text: DOI

References:

[1] Bellare, M.; Tessaro, S.; Vardy, A.; Safavi-Naini, R.; Canetti, R., Semantic security for the wiretap channel, Advances in Cryptology - CRYPTO 2012, 294-311 (2012), Heidelberg: Springer, Heidelberg · Zbl 1296.94081 · doi:10.1007/978-3-642-32009-5_18
[2] Cesa-Bianchi, N., Lugosi, G.: Prediction, learning, and games. Cambridge University Press (2006) · Zbl 1114.91001
[3] Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley (2006) · Zbl 1140.94001
[4] Dodis, Y.; Smith, A., Shannon impossibility, revisited, Information Theoretic Security, 100-110 (2012), Heidelberg: Springer, Heidelberg · Zbl 1295.94054 · doi:10.1007/978-3-642-32284-6_6
[5] Freund, Y.; Schapire, R. E., Adaptive game playing using multiplicative weights, Games and Economic Behavior, 29, 1-2, 79-103 (1999) · Zbl 0964.91007 · doi:10.1006/game.1999.0738
[6] Garay, J.A., Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Rational protocol design: Cryptography against incentive-driven adversaries. In: 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, pp. 648-657 (2013)
[7] Goldreich, O., The Foundations of Cryptography (2001), Cambridge: Cambridge University Press, Cambridge · Zbl 1007.94016 · doi:10.1017/CBO9780511546891
[8] Goldwasser, S.; Micali, S., Probabilistic encryption, J. Comput. Syst. Sci., 28, 2, 270-299 (1984) · Zbl 0563.94013 · doi:10.1016/0022-0000(84)90070-9
[9] Håstad, J.; Impagliazzo, R.; Levin, L. A.; Luby, M., A pseudorandom generator from any one-way function, SIAM J. Comput., 28, 4, 1364-1396 (1999) · Zbl 0940.68048 · doi:10.1137/S0097539793244708
[10] Hsiao, C.-Y.; Lu, C.-J.; Reyzin, L.; Naor, M., Conditional computational entropy, or toward separating pseudoentropy from compressibility, Advances in Cryptology - EUROCRYPT 2007, 169-186 (2007), Heidelberg: Springer, Heidelberg · Zbl 1141.94357 · doi:10.1007/978-3-540-72540-4_10
[11] Kelly, J. L. Jr., A new interpretation of information rate, Bell System Technical Journal, 35, 4, 917-926 (1956) · doi:10.1002/j.1538-7305.1956.tb03809.x
[12] Micali, S.; Rackoff, C.; Sloan, B., The notion of security for probabilistic cryptosystems, SIAM J. Comput., 17, 2, 412-426 (1988) · Zbl 0644.94013 · doi:10.1137/0217025
[13] Pinto, A., Comparing notions of computational entropy, Theory Comput. Syst., 45, 4, 944-962 (2009) · Zbl 1185.68371 · doi:10.1007/s00224-009-9177-7
[14] Shannon, C. E., Communication theory of secrecy systems, Bell System Technical Journal, 28, 4, 656-715 (1949) · Zbl 1200.94005 · doi:10.1002/j.1538-7305.1949.tb00928.x
[15] Vadhan, S. P.; Zheng, C. J., Characterizing pseudoentropy and simplifying pseudorandom generator constructions, Electronic Colloquium on Computational Complexity (ECCC), 18, 141 (2011)
[16] Yao, A.C.-C.: Theory and applications of trapdoor functions (Extended abstract). In: 23rd Annual Symposium on Foundations of Computer Science, Chicago, Illinois, USA, 1982, November 3-5, pp. 80-91 (1982)
[17] Yao, A.C.-C.: Computational information theory. In: Abu-Mostafa, Y.B. (eds.) Complexity in Information Theory, pp. 1-15. Springer (1988) · Zbl 0659.68072
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.