×

Propagation of 1D waves in regular discrete heterogeneous media: a Wigner measure approach. (English) Zbl 1375.81163

The article focusses on an analysis of the propagation properties of discrete waves while solving the finite difference schemes for two 1D wave propagation models, namely the first-order transport equation and second-order wave equation. The fundamental contribution of this work is the provision of a structured meaning to notions such as the principal symbol of the discrete wave operator, allowing one to construct bi-characteristic and characteristic rays propagating the energy of solutions.
Boundary controllability and identifiability properties of the solutions of the wave equation hold due to the fact that the energy of solutions is driven by characteristics that reach the boundary where controllers or observers are placed. This property is known to fail in general for numerical schemes due to high-frequency spurious numerical solutions. However this analysis has thus far only been done within the context of uniform meshes. This research extends this by considering non-uniform meshes and developing the tools and notions required for microlocal analysis.

MSC:

81S30 Phase-space methods including Wigner distributions, etc. applied to problems in quantum mechanics
35A21 Singularity in context of PDEs
37C05 Dynamical systems involving smooth mappings and diffeomorphisms
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
70K05 Phase plane analysis, limit cycles for nonlinear problems in mechanics
81T80 Simulation and numerical modelling (quantum field theory) (MSC2010)

References:

[1] L. Ambrosio, Transport equation and Cauchy problem for BV vector fields, Invent. Math., 158(2004), 227-260. · Zbl 1075.35087 · doi:10.1007/s00222-004-0367-2
[2] L. Ambrosio, A. Figalli, G. Friesecke, J. Giannoulis and T. Paul, Semiclassical limit of quantum dynamics with rough potentials and well-posedness of transport equations with measure initial data, Comm. Pure Appl. Math., 64(9)(2011), 1199-1242. · Zbl 1231.35186 · doi:10.1002/cpa.20371
[3] V. M. Babič and V. S. Buldyrev, Short-wavelength diffraction theory. Asymptotic methods, Translated from the 1972 Russian original by E. F. Kuester, Springer Series on Wave Phenomena, 4, Springer-Verlag, Berlin, 1991. · Zbl 0742.35002
[4] C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves form the boundary, SIAM J. Control and Optimization, 30(1992), 1024-1065. · Zbl 0786.93009 · doi:10.1137/0330055
[5] B. Beckermann and S. Serra-Capizzano, On the asymptotic spectrum of finite element matrix sequences, SIAM J. Numer. Anal., 45(2)(2007), 746-769. · Zbl 1140.65080 · doi:10.1137/05063533X
[6] F. Bouchut, Renormalized solutions to the Vlasov equation with coefficients of bounded variation, Arch. Rational Mech. Anal., 157(2001), 75-90. · Zbl 0979.35032 · doi:10.1007/PL00004237
[7] O. Bühler, A brief introduction to classical, statistical and quantum mechanics, Cournat Lecture Notes, Vol. 13, AMS, 2006. · Zbl 1160.00012
[8] N. Burq, Contrôlabilité exacte de léquation des ondes dans des ouverts peu réguliers, Asymptot. Anal., 14(1997), 157-191. · Zbl 0892.93009
[9] C. Castro and E. Zuazua, Concentration and lack of observability of waves in highly heterogeneous media, Arch. Rat. Mech. Anal., 164(1)(2002), 39-72. · Zbl 1016.35003 · doi:10.1007/s002050200202
[10] N. Champagnat and P.-E. Jabin, Well posedness in any dimension for Hamiltonian flows with non BV force terms, Comm. Partial Differential Equations, 35(2010), 786-816. · Zbl 1210.34010 · doi:10.1080/03605301003646705
[11] G. Cohen, Higher-order numerical methods for transient wave equations, Springer, 2001. · Zbl 0487.65055
[12] S. Cox and E. Zuazua, The rate at which energy decays in a string damped at one end, Indiana Univ. Math. Journal, 44(2)(1995), 545-573. · Zbl 0847.35078 · doi:10.1512/iumj.1995.44.2001
[13] R. J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98(1998), 511-547. · Zbl 0696.34049 · doi:10.1007/BF01393835
[14] S. Ervedoza, On the mixed finite element method for the 1-d wave equation on non-uniform meshes, ESAIM:COCV, 2(2010), 298-326. · Zbl 1192.35109 · doi:10.1051/cocv:2008071
[15] S. Ervedoza, Spectral conditions for admissibility and observability of wave systems, Numer. Math., 113(3)(2009), 377-415. · Zbl 1170.93013 · doi:10.1007/s00211-009-0235-5
[16] S. Ervedoza and E. Zuazua, The wave equation: control and numerics, in Control and stabilization of PDEs, P. M. Cannarsa and J. M. Coron eds., Lecture Notes in Mathematics 2048, CIME Subseries, Springer Verlag, 2012, 245-340. · Zbl 0801.35117
[17] S. Ervedoza and E. Zuazua, On the numerical approximation of exact controls for waves, Springer Briefs in Mathematics, XVII, 2013, ISBN 978-1-4614-5808-1. · Zbl 1282.93001
[18] L. Evans, Partial Differential Equations, Graduate Studies in Mathematics, Vol. 19, AMS, 2000. · Zbl 0868.35075
[19] F. Fanelli and E. Zuazua, Weak observability estimates for 1-d wave equations with rough coeffcients, Ann. Inst. H. Poincaré, Anal. Non Linéaire, to appear. doi:10.1016/j.anihpc.2013.10.004 · Zbl 1320.93027
[20] X. Fu, J. Yong and X. Zhang, Exact controllability for multidimensional semilinear hyperbolic equations, SIAM J. Control Optim., 46(5)(2007), 1578-1614. · Zbl 1143.93005 · doi:10.1137/040610222
[21] P. Gérard, Oscillations and concentration effects in semilinear dispersive wave equations, J. Funct. Anal., 141(1996), 60-98. · Zbl 0868.35075 · doi:10.1006/jfan.1996.0122
[22] P. Gérard, P. A. Markowich, N. J. Mauser and F. Poupaud, Homogenization limits and Wigner transforms, Communications on Pure and Applied Mahematics, L(1997), 323-379. · Zbl 0881.35099
[23] S. Guerrero and G. Lebeau, Singular optimal control for a transport-diffusion equation, Comm. Partial Differential Equations, 32(12)(2007), 1813-1836. · Zbl 1135.35017 · doi:10.1080/03605300701743756
[24] M. Hauray, On Liouville transport equation with force field with \[BV_{loc}\] BVloc, Comm. Partial Differential Equations, 29(1-2)(2004), 207-217. · Zbl 1103.35003
[25] M. Hauray, On two-dimensional Hamiltonian transport equations with \[L^p_{loc}\] Llocp-coefficients, Ann. Inst. H. Poincaré, Anal. Non Linéaire 20, 4(2003), 625-644. · Zbl 1028.35148
[26] D. W. Jordan and P. Smith, Nonlinear ordinary differential equations. An introduction for scientists and engineers, Fourth edition, Oxford University Press, 2007. · Zbl 1130.34001
[27] J. B. Keller, G. Papanicolaou and L. Ryzhik, Transport equations for elastic and other waves in random media, Wave Motion, 24(1996), 327-370. · Zbl 0954.74533 · doi:10.1016/S0165-2125(96)00021-2
[28] C. Kittel, Introduction to Solid State Physics, Eight Edition, John Wiley & Sons, 2005.
[29] P. D. Lax and R. D. Richtmyer, Survey of the stability of linear finite difference equations, Comm. Pure Appl. Math., 9(1956), 267-293. · Zbl 0072.08903
[30] C. Le Bris and P.-L. Lions, Renormalized solutions of some transport equations with partially \[W^{1,1}\] W1,1 velocities and applications, Annali di Matematica, 183(2004), 97-130. · Zbl 1170.35364 · doi:10.1007/s10231-003-0082-4
[31] N. Lerner, Transport equations with partially BV velocities, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 3(4)(2004), 681-703. · Zbl 1170.35362
[32] J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation des systèmes distribués, vol. 1, Masson, Paris, 1988. · Zbl 0653.93002
[33] P.-L. Lions and T. Paul, Sur les mesures de Wigner, Revista Matemática Iberoamericana, 9(3)(1993), 553-618. · Zbl 0801.35117 · doi:10.4171/RMI/143
[34] F. Macìa, Propagación y control de vibraciones en medios discretos y continuos, PhD. Thesis, Universidad Complutense de Madrid, 2002.
[35] F. Macìa, Wigner measures in the discrete setting: high frequency analysis of sampling and reconstruction operators, SIAM J. Math. Anal., 36(2)(2004), 347-383. · Zbl 1070.42022 · doi:10.1137/S0036141003431529
[36] F. Macìa and E. Zuazua, On the lack of observability for wave equations: a Gaussian beam approach, Asymptotic Anal., 32(1)(2002), 1-26. · Zbl 1024.35062
[37] A. Marica and E. Zuazua, Boundary stabilization of numerical approximations of the 1-d variable coefficients wave equation: A numerical viscosity approach, Optimization with PDE Constraints. ESF Networking Program OPTPDE (ed. R. Hoppe), Lecture Notes in Computational Science and Engineering, vol. 101, 2014, Springer International Publishing, pp. 285-324. · Zbl 1322.65091
[38] P. A. Markowich, P. Pietra and C. Pohl, Numerical approximation of quadratic observables of Schrödinger-type equations in the semi-classical limit, Numer. Math., 81(1999), 595-630. · Zbl 0928.65109 · doi:10.1007/s002110050406
[39] P. A. Markowich and F. Poupaud, The pseudo-differential approach to finite difference revisited, Calcolo, Springer-Verlag, 36(1999), 161-186. · Zbl 0936.65126
[40] L. Miller, Escape function conditions for the observation, control, and stabilization of the wave equation, SIAM J. Cont. Optim., 41(5)(2003), 1554-1566. · Zbl 1032.35117 · doi:10.1137/S036301290139107X
[41] J. V. Ralston, Solutions of the wave equation with localized energy, Comm. Pure Appl. Math., 22(1969), 807-823. · Zbl 0209.40402 · doi:10.1002/cpa.3160220605
[42] J. V. Ralston, Gaussian beams and the propagation of singularities, Studies in partial differential equations, MAA Stud. Math., 23, Math. Assoc. America, Washington, DC, 1982, 206-248. · Zbl 1030.65037
[43] J. Rebaza, A first course in applied mathematics, Wiley, 2012. · Zbl 1256.00011 · doi:10.1002/9781118277188
[44] S. Serra-Capizzano and C. Tablino Possio, Analysis of preconditioning strategies for collocation linear systems, Linear Algebra and its Applications, 369(2003), 41-75. · Zbl 1030.65037 · doi:10.1016/S0024-3795(02)00719-X
[45] S. H. Strogatz, Nonlinear dynamics and chaos with applications to Physics, Biology, Chemistry and Engineering, Studies in nonlinearity, Perseus Books Publishing, 1994.
[46] P. Tilli, Locally Toeplitz sequences: spectral properties and applications, Linear Algebra and its Applications, 278(1998), 91-120. · Zbl 0934.15009 · doi:10.1016/S0024-3795(97)10079-9
[47] L. N. Trefethen, Group Velocity in Finite Difference Schemes, SIAM Review, 24(2)(1982), 113-136. · Zbl 0487.65055 · doi:10.1137/1024038
[48] R. Vichnevetsky, Wave propagation and reflection in irregular grids for hyperbolic equations, Applied Numerical Mathematics, North-Holland, 3(1987), 133-166. · Zbl 0625.65118 · doi:10.1016/0168-9274(87)90009-2
[49] G. B. Whitham, Linear and nonlinear waves, John Wiley & Sons, Inc., 1974. · Zbl 0373.76001
[50] E. P. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev., 40(1932), 749-759. · Zbl 0004.38201 · doi:10.1103/PhysRev.40.749
[51] E. Zuazua, Propagation, observation, control and numerical approximation of waves, SIAM Review, 47(2)(2005), 197-243. · Zbl 1077.65095 · doi:10.1137/S0036144503432862
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.