×

A class of probability distributions that is closed with respect to addition as well as multiplication of independent random variables. (English) Zbl 1375.60053

A generalized gamma convolution is a probability distribution on \([0,\infty)\) which is a weak limit as \(n\to\infty\) of \(\mu_1\ast\dots\ast\mu_n\), where \(\mu_i\) is a gamma distribution, and \(\ast\) denotes the convolution. It is known that the class GGC of generalized gamma convolutions is closed with respect to several natural operations. For instance, if \(X_1\) and \(X_2\) are independent random variables with \(\mathrm{Law}(X_i)\in\mathrm{GGC}\), then \(\mathrm{Law}(X_1+X_2)\in \mathrm{GGC}\).
In the present paper, it is proved for the first time that also \(\mathrm{Law}(X_1X_2)\in\mathrm{GGC}\). Several consequences of this result are discussed, the most notable one being that \(\mathrm{Law}(X)\in \mathrm{GGC}\) entails \(\mathrm{Law}(\exp X)\in\mathrm{GGC}\). The last observation enables one to show that certain, explicitly given discrete distribution is a weak limit of convolutions of negative binomial distributions. The paper closes with a number of open problems.

MSC:

60E07 Infinitely divisible distributions; stable distributions
Full Text: DOI

References:

[1] Barndorff-Nielsen, O.E., Maejima, M., Sato, K.: Some classes of multivariate infinitely divisible distributions admitting stochastic integral representations. Bernoulli 12, 1-33 (2006) · Zbl 1102.60013
[2] Behme, A., Maejima, M., Matsui, M., Sakuma, N.: Distributions of exponential integrals of independent increment processes related to generalized gamma convolutions. Bernoulli 18, 1172-1187 (2012) · Zbl 1260.60090 · doi:10.3150/11-BEJ382
[3] Berg, C.; Ismail, MEH (ed.); Koelink, Erik (ed.), On a generalized gamma convolution related to the q-calculus (2005), Berlin · Zbl 1219.33016
[4] Bondesson, L.: On the infinite divisibility of products of powers of gamma variables. Z. Wahrsch. verw. Gebiete 49, 171-175 (1979) · Zbl 0393.60013 · doi:10.1007/BF00534256
[5] Bondesson, L.: Generalized Gamma Convolutions and Related Classes of Distributions and Densities. Lecture Notes in Statistics 76. Springer, New York (1992) · Zbl 0756.60015 · doi:10.1007/978-1-4612-2948-3
[6] Bondesson, L.: On univariate and bivariate generalized gamma convolutions. J. Stat. Plan. Inference 139, 3759-3765 (2009) · Zbl 1171.60306 · doi:10.1016/j.jspi.2009.05.015
[7] Bondesson, L., Grandell, J., Peetre, J.: The life and work of Olof Thorin (1912-2004). Proc. Estonian Acad. Sci. Phys. Math. 57, 18-25 (2008) · Zbl 1147.01005 · doi:10.3176/proc.2008.1.02
[8] Bosch, P., Simon, T.: On the self-decomposability of the Fréchet distribution. Indag. Math. 24, 626-636 (2013) · Zbl 1287.60023 · doi:10.1016/j.indag.2013.04.006
[9] Goovaerts, M.J., d’Hooge, L., de Pril, N.: On the infinite divisibility of the product of two \[\varGamma\] Γ-distributed stochastical variables. Appl. Math. Comput. 3, 127-135 (1977) · Zbl 0363.60020 · doi:10.1016/0096-3003(77)90025-X
[10] Grigelionis, B.: On subordinated multivariate Gaussian Lévy processes. Acta Appl. Math. 96, 233-246 (2007) · Zbl 1121.60050 · doi:10.1007/s10440-007-9108-z
[11] Gut, A.: On the moment problem. Bernoulli 8, 407-421 (2002) · Zbl 1006.60016
[12] James, L.F., Zhang, Z.: Quantile clocks. Ann. Appl. Probab. 21, 1627-1662 (2011) · Zbl 1246.60027 · doi:10.1214/10-AAP752
[13] James, L.F., Roynette, B., Yor, M.: Generalized gamma convolutions, Dirichlet means, Thorin measures, with explicit examples. Probab. Surv. 5, 346-415 (2008) · Zbl 1189.60035 · doi:10.1214/07-PS118
[14] Kent, J.T., Mohammadzadeh, M., Mosammam, A.M.: The dimple in Gneiting’s spatial-temporal covariance model. Biometrika 98, 489-494 (2011) · Zbl 1215.62099 · doi:10.1093/biomet/asr006
[15] Kozubowski, T.J.: A note on self-decomposability of stable process subordinated to self-decomposable subordinator. Stat. Probab. Lett. 74, 89-91 (2005) · Zbl 1082.60039 · doi:10.1016/j.spl.2005.04.025
[16] Kristiansen, G.: A proof of Steutel’s conjecture. Ann. Probab. 22, 442-452 (1994) · Zbl 0796.60017 · doi:10.1214/aop/1176988867
[17] Lijoi, A., Mena, R.H., Prünster, I.: Bayesian nonparametric analysis for a generalized Dirichlet process prior. Stat. Inference Stoch. Process. 8, 283-309 (2005) · Zbl 1095.62064 · doi:10.1007/s11203-005-6071-z
[18] Marshall, A.W., Olkin, I.: Life Distributions: Structure of Nonparametric, Semiparametric, and Parametric Families. Springer Series in Statistics, Berlin (2007) · Zbl 1304.62019
[19] Pakes, A.G.: Structure of Stieltjes classes of moment-equivalent probability laws. J. Math. Anal. Appl. 326, 1268-1290 (2007) · Zbl 1120.60007 · doi:10.1016/j.jmaa.2006.03.035
[20] Schilling, R.L., Song, R., Vondraček, Z.: Bernstein Functions. Studies in Mathematics 37. Walter de Gruyter, Berlin (2010) · Zbl 1197.33002
[21] Shanbhag, D.N., Pestana, D., Sreehari, M.: Some further results in infinite divisibility. Math. Proc. Camb. Philos. Soc. 82, 289-295 (1977) · Zbl 0366.60022 · doi:10.1017/S0305004100053925
[22] Steutel, F.W.: Some recent results in infinite divisibility. Stoch. Process. Appl. 1, 125-143 (1973) · Zbl 0259.60011 · doi:10.1016/0304-4149(73)90008-2
[23] Steutel, F.W., van Harn, K.: Infinite Divisibility of Probability Distributions on the Real Line. Marcel Dekker, New York (2004) · Zbl 1063.60001
[24] Thorin, O.: On the infinite divisibility of the Pareto distribution. Scand. Actuar. J. 1977, 31-40 (1977) · Zbl 0355.60016 · doi:10.1080/03461238.1977.10405623
[25] Thorin, O.: On the infinite divisibility of the lognormal distribution. Scand. Actuar. J. 1977, 121-148 (1977) · Zbl 0372.60020 · doi:10.1080/03461238.1977.10405635
[26] Vervaat, W.: On a stochastic difference equation and a representation of non-negative infinitely divisible random variables. Adv. Appl. Probab. 11, 750-783 (1979) · Zbl 0417.60073 · doi:10.2307/1426858
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.