×

Eigenstructure and iterates for uniquely ergodic Kantorovich modifications of operators. (English) Zbl 1375.37016

Summary: We consider Markov operators \(L\) on \(C[0,1]\) such that for a certain \(c \in [0,1)\), \(\| (Lf)' \| \leq c \| f' \| \) for all \( f \in C^1[0,1]\). It is shown that \(L\) has a unique invariant probability measure \(\nu \), and then \(\nu \) is used in order to characterize the limit of the iterates \(L^m\) of \(L\). When \(L\) is a Kantorovich modification of a certain classical operator from approximation theory, the eigenstructure of this operator is used to give a precise description of the limit of \(L^m\). This way we extend some known results; in particular, we extend the domain of convergence of the dual functionals associated with the classical Bernstein operator, which gives a partial answer to a problem raised by S. Cooper and S. Waldron [J. Approx. Theory 105, No. 1, 133–165 (2000; Zbl 0963.41006), Remark after Theorem 4.20].

MSC:

37A30 Ergodic theorems, spectral theory, Markov operators
41A36 Approximation by positive operators

Citations:

Zbl 0963.41006
Full Text: DOI

References:

[1] Altomare, F., Raşa, I.: On some classes of diffusion equations and related approximation problems, trends and applications in constructive approximation. In: de Bruin, M.G., Mache, D.H., Szabados, J. (eds.) International Series of Numerical Mathematics, vol. 151, pp. 13-26. Birkhäuser, Basel (2005) · Zbl 1077.35026
[2] Altomare, F., Raşa, I.: Lipschitz contractions, unique ergodicity and asymptotics of Markov semigroups. Bolletino U. M. I. 9, 1-17 (2012) · Zbl 1268.47013
[3] Altomare, F., Cappelletti Montano, M., Leonessa, V., Raşa, I.: Markov Operators, Positive Semigroups and Approximation Processes. Walter de Gruyter, Berlin, Munich, Boston (2014) · Zbl 1352.47001
[4] Attalienti, A., Raşa, I.: Overiterated linear operators and asymptotic behaviour of semigroups. Mediterr. J. Math. 5, 315-324 (2008) · Zbl 1179.41021 · doi:10.1007/s00009-008-0152-3
[5] Berens, H., Xu, Y.: On Bernstein-Durrmeyer Polynomials with Jacobi Weights, Approximation Theory and Functional Analysis (College Station, TX, 1990), pp. 25-46. Academic, Boston (1991) · Zbl 1399.41044
[6] Cooper, S., Waldron, S.: The eigenstructure of the Bernstein operator. JAT 105, 133-165 (2000) · Zbl 0963.41006
[7] Gavrea, I., Ivan, M.: On the iterates of positive linear operators preserving the affine functions. J. Math. Anal. Appl. 372, 366-368 (2010) · Zbl 1196.41014 · doi:10.1016/j.jmaa.2010.07.026
[8] Gonska, H., Heilmann, M., Raşa, I.: Kantorovich operators of order \[k\] k. Numer. Funct. Anal. Optimiz. 32, 717-738 (2011) · Zbl 1236.41023 · doi:10.1080/01630563.2011.580877
[9] Gonska, H., Păltănea, R.: Simultaneous approximation by a class of Bernstein-Durrmeyer operators preserving linear functions. Czechoslovak Math. J. 60(135), 783-799 (2010) · Zbl 1224.41016 · doi:10.1007/s10587-010-0049-8
[10] Gonska, H., Raşa, I.: On infinite products of positive linear operators reproducing linear functions. Positivity 17(1), 67-79 (2011) · Zbl 1271.41006 · doi:10.1007/s11117-011-0149-1
[11] Gonska, H., Raşa, I., Rusu, M.-D.: Applications of an Ostrowski-type inequality. J. Comput. Anal. Appl. 14(1), 19-31 (2012) · Zbl 1269.26001
[12] Gonska, H., Raşa, I., Stanila, E.-D.: The eigenstructure of operators linking the Bernstein and the genuine Bernstein-Durrmeyer operators. Mediterr. J. Math. 11, 561-576 (2014) · Zbl 1295.41021 · doi:10.1007/s00009-013-0347-0
[13] Gonska, H., Raşa, I.,. Stanila, E.-D: Beta operators with Jacobi weights. In: Ivanov, K., Nikolov, G., Uluchev, R. (eds.) Constructive Theory of Functions, Sozopol 2013 , pp. 99-112. Prof. Marin Drinov Academic Publishing House, Sofia (2014) · Zbl 1416.41025
[14] Heilmann, M.: Erhöhung der Konvergenzgeschwindigkeit bei der Approximation von Funktionen mit Hilfe von Linearkombinationen spezieller positiver linearer Operatoren, Habilitationschrift Universität Dortmund (1992)
[15] Heilmann, M.: Commutativity and spectral properties of genuine Baskakov-Durrmeyer type operators and their \[k\] kth order Kantorovich modification. J. Numer. Anal. Approx. Theory 44(4), 166-179 (2015) · Zbl 1399.41044
[16] Heilmann, M., Raşa, \[I.: k\] k-th order Kantorovich type modification of the operators \[U_n^\rho\] Unρ. J. Appl. Funct. Anal. 9(3-4), 320-334 (2014) · Zbl 1358.41017
[17] Kelisky, R.P., Rivlin, T.J.: Iterates of Bernstein polynomials. Pac. J. Math. 21(3), 511-520 (1967) · Zbl 0177.31302 · doi:10.2140/pjm.1967.21.511
[18] Krengel, U.: Ergodic Theorems. Walter de Gruyter, Berlin, New York (1985) · Zbl 0575.28009 · doi:10.1515/9783110844641
[19] Mahmudov, N.I.: Korovkin type theorems for iterates of certain positive linear operators. arXiv:1103.2918v1 [math.FA]
[20] Lorentz, G.G.: Bernstein Polynomials. Chelsea Publishing Company, New York (1986) · Zbl 0989.41504
[21] Raşa, I.: Asymptotic behaviour of iterates of positive linear operators. Jaen J. Approx. 1(2), 195-204 (2009) · Zbl 1184.41013
[22] Raşa, \[I.: C_0\] C0 - semigroups and iterates of positive linear operators: asymptotic behaviour. Rend. Circ. Mat. Palermo 2(Suppl 82), 123-142 (2010) · Zbl 1470.41023
[23] Wagner, M.: Quasi-Interpolanten zu genuinen Baskakov-Durrmeyer-Typ Operatoren, Disssertation Universität Wuppertal (2013) · Zbl 1280.41019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.