×

Global bifurcation of steady gravity water waves with critical layers. (English) Zbl 1375.35294

Summary: We construct families of two-dimensional travelling water waves propagating under the influence of gravity in a flow of constant vorticity over a flat bed, in particular establishing the existence of waves of large amplitude. A Riemann-Hilbert problem approach is used to recast the governing equations as a one-dimensional elliptic pseudodifferential equation with a scalar constraint. The structural properties of this formulation, which arises as the Euler-Lagrange equation of an energy functional, enable us to develop a theory of analytic global bifurcation.

MSC:

35Q15 Riemann-Hilbert problems in context of PDEs
35R35 Free boundary problems for PDEs
35C07 Traveling wave solutions
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
35A15 Variational methods applied to PDEs
35B32 Bifurcations in context of PDEs
35S15 Boundary value problems for PDEs with pseudodifferential operators

References:

[1] Amick C.J., Toland J.F.: On periodic water-waves and their convergence to solitary waves in the long-wave limit. Philos. Trans. Roy. Soc. A 303, 633-669 (1981) · Zbl 0482.76029 · doi:10.1098/rsta.1981.0231
[2] Babenko K. I., Some remarks on the theory of surface waves of finite amplitude. Dokl. Akad. Nauk SSSR, 294 (1987), 1033-1037 (Russian); English translation in Soviet Math. Dokl., 35 (1987), 599-603. · Zbl 0641.76007
[3] Buffoni B., Dancer E.N., Toland J.F.: The regularity and local bifurcation of steady periodic water waves. Arch. Ration. Mech. Anal. 152, 207-240 (2000) · Zbl 0959.76010 · doi:10.1007/s002050000086
[4] Buffoni B., Dancer E.N., Toland J.F.: The sub-harmonic bifurcation of Stokes waves. Arch. Ration. Mech. Anal., 152, 241-271 (2000) · Zbl 0962.76012 · doi:10.1007/s002050000087
[5] Buffoni B., Séré É., Toland J.F.: Surface water waves as saddle points of the energy. Calc. Var. Partial Differential Equations, 17, 199-220 (2003) · Zbl 1222.76019 · doi:10.1007/s00526-002-0166-9
[6] Buffoni B., Toland J.F.: Analytic Theory of Global Bifurcation. Princeton Series in Applied Mathematics. Princeton University Press, Princeton, NJ (2003) · Zbl 1021.47044 · doi:10.1515/9781400884339
[7] Burckel, R. B., An Introduction to Classical Complex Analysis. Vol. 1. Pure and Applied Mathematics, 82. Academic Press, New York-London, 1979. · Zbl 0434.30001
[8] Burton G.R., Toland J.F.: Surface waves on steady perfect-fluid flows with vorticity. Comm. Pure Appl. Math., 64, 975-1007 (2011) · Zbl 1277.35284 · doi:10.1002/cpa.20365
[9] Constantin A.: The trajectories of particles in Stokes waves. Invent. Math., 166, 523-535 (2006) · Zbl 1108.76013 · doi:10.1007/s00222-006-0002-5
[10] Constantin, A., Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis. CBMS-NSF Regional Conference Series in Applied Mathematics, 81. SIAM, Philadelphia, PA, 2011. · Zbl 1266.76002
[11] Constantin A., Ehrnström M., Wahlén E.: Symmetry of steady periodic gravity water waves with vorticity. Duke Math. J., 140, 591-603 (2007) · Zbl 1151.35076 · doi:10.1215/S0012-7094-07-14034-1
[12] Constantin A., Escher J.: Symmetry of steady periodic surface water waves with vorticity. J. Fluid Mech., 498, 171-181 (2004) · Zbl 1050.76007 · doi:10.1017/S0022112003006773
[13] Constantin A., Escher J.: Analyticity of periodic traveling free surface water waves with vorticity. Ann. of Math. 173, 559-568 (2011) · Zbl 1228.35076 · doi:10.4007/annals.2011.173.1.12
[14] Constantin A., Sattinger D., Strauss W.: Variational formulations for steady water waves with vorticity. J. Fluid Mech., 548, 151-163 (2006) · doi:10.1017/S0022112005007469
[15] Constantin A., Strauss W.: Exact steady periodic water waves with vorticity. Comm. Pure Appl. Math., 57, 481-527 (2004) · Zbl 1038.76011 · doi:10.1002/cpa.3046
[16] Constantin A., Strauss W.: Pressure beneath a Stokes wave. Comm. Pure Appl. Math. 63, 533-557 (2010) · Zbl 1423.76061
[17] Constantin A., Strauss W.: Periodic traveling gravity water waves with discontinuous vorticity. Arch. Ration. Mech. Anal., 202, 133-175 (2011) · Zbl 1269.76024 · doi:10.1007/s00205-011-0412-4
[18] Constantin A., Vărvărucă E.: Steady periodic water waves with constant vorticity: regularity and local bifurcation. Arch. Ration. Mech. Anal. 199, 33-67 (2011) · Zbl 1229.35203 · doi:10.1007/s00205-010-0314-x
[19] Crandall M.G., Rabinowitz P.H.: Bifurcation from simple eigenvalues. J. Funct. Anal., 8, 321-340 (1971) · Zbl 0219.46015 · doi:10.1016/0022-1236(71)90015-2
[20] Dancer E.N.: Bifurcation theory for analytic operators. Proc. London Math. Soc., 26, 359-384 (1973) · Zbl 0252.47069 · doi:10.1112/plms/s3-26.2.359
[21] Dubreil-Jacotin M.-L.: Sur la détermination rigoureuse des ondes permanentes périodiques d’ampleur finie. J. Math. Pures Appl., 13, 217-291 (1934) · JFM 60.0733.04
[22] Dym, H. McKean, H. P., Fourier Series and Integrals. Probability and Mathematical Statistics, 14. Academic Press, New York-London, 1972. · Zbl 0242.42001
[23] Friedrichs K.: Über ein Minimumproblem für Potentialströmungen mit freiem Rande. Math. Ann. 109, 60-82 (1934) · Zbl 0008.16605 · doi:10.1007/BF01449125
[24] Giaquinta, M. Hildebrandt, S., Calculus of Variations. I. Grundlehren der Mathematischen Wissenschaften, 310. Springer, Berlin-Heidelberg, 1996.
[25] Jonsson, I. G., Wave-current interactions, in The Sea (Le Méhauté, B. and Hanes, D.M. eds.), Ocean Eng. Sc., 9(A), pp. 65-120. Wiley, 1990. · Zbl 1149.76011
[26] Ko J., Strauss W.: Effect of vorticity on steady water waves. J. Fluid Mech., 608, 197-215 (2008) · Zbl 1145.76330 · doi:10.1017/S0022112008002371
[27] Ko J., Strauss W.: Large-amplitude steady rotational water waves. Eur. J. Mech. B Fluids, 27, 96-109 (2008) · Zbl 1149.76011 · doi:10.1016/j.euromechflu.2007.04.004
[28] Luke J.C.: A variational principle for a fluid with a free surface. J. Fluid Mech., 27, 395-397 (1967) · Zbl 0146.23701 · doi:10.1017/S0022112067000412
[29] Okamoto, H. & Shōji, M., The Mathematical Theory of Permanent Progressive Water-Waves. Advanced Series in Nonlinear Dynamics, 20. World Scientific, River Edge, NJ, 2001. · Zbl 0983.76002
[30] Rabinowitz P.H.: Some global results for nonlinear eigenvalue problems. J. Funct. Anal., 7, 487-513 (1971) · Zbl 0212.16504 · doi:10.1016/0022-1236(71)90030-9
[31] Shargorodsky E., Toland J.F.: Bernoulli free-boundary problems. Mem. Amer. Math. Soc., 196, 914 (2008) · Zbl 1167.35001
[32] Spielvogel E.R.: A variational principle for waves of infinite depth. Arch. Ration. Mech. Anal., 39, 189-205 (1970) · Zbl 0229.76012 · doi:10.1007/BF00281250
[33] Stein, E. M.,Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Mathematical Series, 43. Princeton University Press, Princeton, NJ, 1993. · Zbl 0821.42001
[34] Strauss W.: Steady water waves. Bull. Amer. Math. Soc., 47, 671-694 (2010) · Zbl 1426.76078 · doi:10.1090/S0273-0979-2010-01302-1
[35] Strauss, W., Rotational steady periodic water waves with stagnation points. Talk at SIAM Conference on Analysis of Partial Differential Equations (San Diego, CA, 2011). · Zbl 0962.76012
[36] Teles da Silva A.F., Peregrine D.H.: Steep, steady surface waves on water of finite depth with constant vorticity. J. Fluid Mech., 195, 281-302 (1988) · doi:10.1017/S0022112088002423
[37] Thomson, W. (Lord Kelvin), On a disturbing infinity in Lord Rayleigh’s solution for waves in a plane vortex stratum. Nature, 23 (1880), 45-46. · Zbl 1038.76011
[38] Toland J.F.: Stokes waves. Topol. Methods Nonlinear Anal. 7, 1-48 (1996) · Zbl 0897.35067 · doi:10.12775/TMNA.1996.001
[39] Toland J.F.: On a pseudo-differential equation for Stokes waves. Arch. Ration. Mech. Anal., 162, 179-189 (2002) · Zbl 1028.35126 · doi:10.1007/s002050200195
[40] Torchinsky A.: Real-Variable Methods in Harmonic Analysis. Dover, Mineola, NY (2004) · Zbl 1097.42002
[41] Vanden-Broeck J.-M.: Some new gravity waves in water of finite depth. Phys. Fluids, 26, 2385-2387 (1983) · Zbl 0531.76022 · doi:10.1063/1.864421
[42] Vărvărucă E.: Singularities of Bernoulli free boundaries. Comm. Partial Differential Equations, 31, 1451-1477 (2006) · Zbl 1111.35137 · doi:10.1080/03605300600635012
[43] Vărvărucă E.: Some geometric and analytic properties of solutions of Bernoulli free-boundary problems. Interfaces Free Bound., 9, 367-381 (2007) · Zbl 1148.35102
[44] Vărvărucă E.: Bernoulli free-boundary problems in strip-like domains and a property of permanent waves on water of finite depth. Proc. Roy. Soc. Edinburgh Sect. A, 138, 1345-1362 (2008) · Zbl 1155.35498 · doi:10.1017/S0308210507000522
[45] Vărvărucă E.: On the existence of extreme waves and the Stokes conjecture with vorticity. J. Differential Equations, 246, 4043-4076 (2009) · Zbl 1162.76011 · doi:10.1016/j.jde.2008.12.018
[46] Vărvărucă E., Weiss G.S.: A geometric approach to generalized Stokes conjectures. Acta Math., 206, 363-403 (2011) · Zbl 1238.35194 · doi:10.1007/s11511-011-0066-y
[47] Vărvărucă E., Weiss G.S.: The Stokes conjecture for waves with vorticity. Ann. Inst. H. Poincaré Anal. Non Linéaire, 29, 861-885 (2012) · Zbl 1317.35209 · doi:10.1016/j.anihpc.2012.05.001
[48] Vărvărucă E., Zarnescu A.: Equivalence of weak formulations of the steady water waves equations. Philos. Trans. Roy. Soc. A, 370, 1703-1719 (2012) · Zbl 1250.76043 · doi:10.1098/rsta.2011.0455
[49] Wahlén E.: Steady water waves with a critical layer. J. Differential Equations, 246, 2468-2483 (2009) · Zbl 1159.76008 · doi:10.1016/j.jde.2008.10.005
[50] Zakharov, V. E., Stability of periodic waves of finite amplitude on the surface of a deep fluid. Zh. Prikl. Mekh. i Tekh. Fiz., 9 (1968), 86-94 (Russian); English translation in J. Appl. Mech. Tech. Phys., 9 (1968), 190-194. · Zbl 0482.76029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.