×

Non-positivity of the semigroup generated by the Dirichlet-to-Neumann operator. (English) Zbl 1375.35139

Summary: By analysing some explicit examples we investigate the positivity and the non-positivity of the semigroup generated by the Dirichlet-to-Neumann operator associated with the operator \(\varDelta +\lambda I\) as \(\lambda \) varies. It is known that the semigroup is positive if \(\lambda <\lambda _1\), where \(\lambda _1\) is the principal eigenvalue of \(-\varDelta \) with Dirichlet boundary conditions. We show that it is possible for the semigroup to be non-positive, eventually positive or positive and irreducible depending on \(\lambda >\lambda _1\).

MSC:

35J25 Boundary value problems for second-order elliptic equations
47D06 One-parameter semigroups and linear evolution equations
Full Text: DOI

References:

[1] Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. In: National bureau of standards applied mathematics series, vol. 55. U.S. Government Printing Office, Washington (1964) · Zbl 0171.38503
[2] Arendt, W., ter Elst, A.F.M.: The Dirichlet-to-Neumann operator on rough domains. J. Differ. Eq. 251(8), 2100-2124 (2011). doi:10.1016/j.jde.2011.06.017 · Zbl 1241.47036 · doi:10.1016/j.jde.2011.06.017
[3] Arendt, W., Grabosch, A., Greiner, G., Groh, U., Lotz, H.P., Moustakas, U., Nagel, R., Neubrander, F., Schlotterbeck, U.: One-parameter semigroups of positive operators. In: Lecture Notes in Mathematics, vol. 1184. Springer-Verlag, Berlin (1986) doi:10.1007/BFb0074922 · JFM 56.0180.05
[4] Arendt, W., Mazzeo, R.: Spectral properties of the Dirichlet-to-Neumann operator on Lipschitz domains. Ulmer Semin. 12, 23-37 (2007)
[5] Arendt, W., Mazzeo, R.: Friedlander’s eigenvalue inequalities and the Dirichlet-to-Neumann semigroup. Commun. Pure, Appl. Anal. 11(6), 2201-2212 (2012). doi:10.3934/cpaa.2012.11.2201 · Zbl 1267.35139 · doi:10.3934/cpaa.2012.11.2201
[6] Auchmuty, G.: Steklov eigenproblems and the representation of solutions of elliptic boundary value problems. Numer. Funct. Anal. Optim. 25(3-4), 321-348 (2004). doi:10.1081/NFA-120039655 · Zbl 1072.35133 · doi:10.1081/NFA-120039655
[7] Auchmuty, G.: Spectral characterization of the trace spaces \[H^s(\partial \Omega )Hs\](∂Ω). SIAM J. Math. Anal. 38(3), 894-905 (2006). doi: 10.1137/050626053 · Zbl 1120.46014 · doi:10.1137/050626053
[8] Courant, R., Hilbert, D.: Methods of mathematical physics. Interscience, New York (1953) · Zbl 0053.02805
[9] Elbert, Á., Laforgia, A.: On the square of the zeros of Bessel functions. SIAM J. Math. Anal. 15(1), 206-212 (1984). doi:10.1137/0515017 · Zbl 0541.33001 · doi:10.1137/0515017
[10] Engel, K.J.: The Laplacian on \[C(\overline{\Omega })C\](Ω¯) with generalized Wentzell boundary conditions. Arch. Math. (Basel) 81(5), 548-558 (2003). doi: 10.1007/s00013-003-0557-y · Zbl 1064.47043 · doi:10.1007/s00013-003-0557-y
[11] Escher, J.: Nonlinear elliptic systems with dynamic boundary conditions. Math. Z. 210(3), 413-439 (1992). doi:10.1007/BF02571805 · Zbl 0759.35025 · doi:10.1007/BF02571805
[12] Escher, J.: The Dirichlet-Neumann operator on continuous functions. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 21(2), 235-266 (1994). http://www.numdam.org/item?id=ASNSP_1994_4_21_2_235_0 · Zbl 0810.35017
[13] Henry, D.: Perturbation of the boundary in boundary-value problems of partial differential equations. In: London Mathematical Society Lecture Note Series, vol. 318. Cambridge University Press, Cambridge (2005) · Zbl 1170.35300
[14] Ismail, M.E.H.: Classical and quantum orthogonal polynomials in one variable. In: Encyclopedia of Mathematics and its Applications, vol. 98. Cambridge University Press, Cambridge (2005). With two chapters by Walter Van Assche · Zbl 1082.42016
[15] Katznelson, Y.: An introduction to harmonic analysis, 3rd edn. Cambridge Mathematical Library. Cambridge University Press, Cambridge (2004) · Zbl 1055.43001
[16] Kennedy, J.B.: The nodal line of the second eigenfunction of the Robin Laplacian in \[\mathbb{R}^2\] R2 can be closed. J. Differ. Eq. 251(12), 3606-3624 (2011). doi: 10.1016/j.jde.2011.08.012 · Zbl 1223.35242 · doi:10.1016/j.jde.2011.08.012
[17] Laforgia, A., Muldoon, M.E.: Inequalities and approximations for zeros of Bessel functions of small order. SIAM J. Math. Anal. 14(2), 383-388 (1983). doi:10.1137/0514029 · Zbl 0514.33006 · doi:10.1137/0514029
[18] Ouhabaz, E.M.: Analysis of heat equations on domains. In: London Mathematical Society Monographs Series, vol. 31. Princeton University Press, Princeton (2005) · Zbl 1082.35003
[19] Siegel, C.L.: Über einige Anwendungen diophantischer Approximationen. Abhandlungen der Preußischen Akademie der Wissenschaften 1, 1-70 (1929) · JFM 56.0180.05
[20] Taylor, A.E., Lay, D.C.: Introduction to functional analysis, 2nd edn. Wiley, New York (1980) · Zbl 0501.46003
[21] Uhlenbeck, K.: Generic properties of eigenfunctions. Amer. J. Math. 98(4), 1059-1078 (1976). doi:10.2307/2374041 · Zbl 0355.58017 · doi:10.2307/2374041
[22] Watson, G.N.: A treatise on the theory of Bessel functions, 2nd edn. Cambridge University Press, Cambridge (1944) · Zbl 0063.08184
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.