×

The BRST complex of homological Poisson reduction. (English) Zbl 1375.17015

Summary: BRST complexes are differential graded Poisson algebras. They are associated with a coisotropic ideal \(J\) of a Poisson algebra \(P\) and provide a description of the Poisson algebra \((P/J)^J\) as their cohomology in degree zero. Using the notion of stable equivalence introduced in [G. Felder and D. Kazhdan, Contemp. Math. 610, 79–137 (2014; Zbl 1304.81144)], we prove that any two BRST complexes associated with the same coisotropic ideal are quasi-isomorphic in the case \(P = \mathbb R[V]\) where \(V\) is a finite-dimensional symplectic vector space and the bracket on \(P\) is induced by the symplectic structure on \(V\). As a corollary, the cohomology of the BRST complexes is canonically associated with the coisotropic ideal \(J\) in the symplectic case. We do not require any regularity assumptions on the constraints generating the ideal \(J\). We finally quantize the BRST complex rigorously in the presence of infinitely many ghost variables and discuss the uniqueness of the quantization procedure.

MSC:

17B63 Poisson algebras
17B55 Homological methods in Lie (super)algebras
17B81 Applications of Lie (super)algebras to physics, etc.
81T70 Quantization in field theory; cohomological methods
81S22 Open systems, reduced dynamics, master equations, decoherence

Citations:

Zbl 1304.81144

References:

[1] Batalin, I., Fradkin, E.: A generalized canonical formalism and quantization of reducible gauge theories. Phys. Lett. 122B(2), 157-164 (1983) · Zbl 0967.81508 · doi:10.1016/0370-2693(83)90784-0
[2] Batalin, I., Vilkovisky, G.: Relativistic s-matrix of dynamical systems with boson and fermion constraints. Phys. Lett. 69B(3), 309-312 (1977) · doi:10.1016/0370-2693(77)90553-6
[3] Becchi, B., Rouet, A., Stora, R.: Renormalization of gauge theories. Ann. Phys. 98, 287-321 (1976) · doi:10.1016/0003-4916(76)90156-1
[4] Bordemann, M.; Herbig, H-C; Pflaum, M.; Cheniot, D. (ed.); Dutertre, N. (ed.); Murolo, C. (ed.); Trotman, D. (ed.); Pichon, A. (ed.), A homological approach to singular reduction in deformation quantization, 443-462 (2007), Singapore · Zbl 1128.53060
[5] Bordemann, M., Herbig, H.-C., Waldmann, S.: Brst cohomology and phase space reduction in deformation quantization. Commun. Math. Phys. 210(1), 107-144 (2000) · Zbl 0961.53046 · doi:10.1007/s002200050774
[6] Cartan, H., Eilenberg, S.: Homological Algebra. Princeton University Press, Princeton (1956) · Zbl 0075.24305
[7] Deser, A.: Star products on graded manifolds and \[\alpha\] α’-corrections to double field theory. In: Kielanowski, P., Ali, T.S., Bieliavsky, P., Odzijewicz, A., Schlichenmaier, M., Voronov, T. (eds.) Geometric Methods in Physics: XXXIV Workshop, Białowieża, Poland, June 28 -July 4, 2015. pp. 311-320. Springer International Publishing (2016) · Zbl 1442.81057
[8] Felder, G., Kazhdan, D.: The classical master equation (with an appendix by Tomer M. Schlank). In: Etingof, P., Khovanov, M., Savage, A. (eds.) Contemporary Mathematics 610, Perspectives in representation theory, pp 79-137. American Mathematical Society (2014) · Zbl 1304.81144
[9] Fisch, J., Henneaux, M., Stasheff, J., Teitelboim, C.: Existence, uniqueness and cohomology of the classical brst charge with ghosts of ghosts. Commun. Math. Phys. 120(3), 379-407 (1989) · Zbl 0685.58054 · doi:10.1007/BF01225504
[10] Fradkin, E., Fradkina, T.: Quantization of relativistic systems with boson and fermion first- and second-class constraints. Phys. Lett. 72B(3), 343-348 (1978) · doi:10.1016/0370-2693(78)90135-1
[11] Fradkin, E., Vilkovisky, G.: Quantization of relativistic systems with constraints. Phys. Lett. 55B(2), 224-226 (1975) · Zbl 0967.81532 · doi:10.1016/0370-2693(75)90448-7
[12] Henneaux, M., Teitelboim, C.: Quantization of Gauge Systems. Princeton University Press, Princeton (1994) · Zbl 0838.53053
[13] Herbig, H.-C.: Variations on Homological Reduction. PhD thesis, University of Frankfurt, 2007. ArXiv e-prints. arXiv:0708.3598
[14] Kostant, B., Sternberg, S.: Symplectic reduction, brs cohomology, and infinite-dimensional clifford algebras. Ann. Phys. 176(1), 49-113 (1987) · Zbl 0642.17003 · doi:10.1016/0003-4916(87)90178-3
[15] Moyal, J.: Quantum mechanics as a statistical theory. Math. Proc. Camb. Philos. Soc. 45(2), 99-124 (1949) · Zbl 0031.33601 · doi:10.1017/S0305004100000487
[16] Schätz, F.: Invariance of the BFV complex. Pacific J. Math. 248(2), 453-474 (2010) · Zbl 1210.53078 · doi:10.2140/pjm.2010.248.453
[17] Stasheff, J.: Homological reduction of constrained poisson algebras. J. Differ. Geom. 45(1), 221-240 (1997) · Zbl 0874.58020
[18] Tate, J.: Homology of noetherian rings and local rings. Ill. J. Math. 1(1), 14-27, 03 (1957) · Zbl 0079.05501
[19] Tyutin, I.: FIAN preprint. (39) (1975) · Zbl 0967.81532
[20] Waldmann, S.: Poisson-Geometrie und Deformationsquantisierung. Springer, Berlin (2007) · Zbl 1139.53001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.