×

New algebraic structures from Hermitian one-matrix model. (English) Zbl 1375.15058

Summary: Virasoro constraint is the operator algebra version of one-loop equation for a Hermitian one-matrix model, and it plays an important role in solving the model. We construct the realization of the Virasoro constraint from the Conformal Field Theory (CFT) method. From multi-loop equations of the one-matrix model, we get a more general constraint. It can be expressed in terms of the operator algebras, which is the Virasoro subalgebra with extra parameters. In this sense, we named as generalized Virasoro constraint. We enlarge this algebra with central extension, this is a new kind of algebra, and the usual Virasoro algebra is its subalgebra. And we give a bosonic realization of its subalgebra.

MSC:

15B57 Hermitian, skew-Hermitian, and related matrices
17B68 Virasoro and related algebras
81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations

References:

[1] Akemann, G.: Universal correlators for multi-arc complex matrix models. Nucl. Phys. B,507, 475-500 (1997) · Zbl 0925.81270 · doi:10.1016/S0550-3213(97)00552-X
[2] Alexandrov, A., Mironov, A., Morozov, A.: Partition functions of matrix models as the first special functions of string theory I. finite size hermitian 1-matrix model. Int. J. Mod. Phys. A,19, 4127-4165 (2004) · Zbl 1087.81051 · doi:10.1142/S0217751X04018245
[3] Ambjern, J., Akemann, G.: New univerdal spectral correlators. J. Phys. A,29, L555-L560 (1996) · Zbl 0902.15015 · doi:10.1088/0305-4470/29/22/001
[4] Ambjern, J., Makeenko, Yu.: Properties of loop equations for the hermitean matrix model and for twodimensional quantum gravity. Mod. Phys. Lett. A,5, 1753-1763 (1990) · Zbl 1020.81806 · doi:10.1142/S0217732390001992
[5] Banks, T., Fischler, W., Shenker, S. H., et al.: M-theory as a matrix model: a conjucture. Phys. Rev. D,55, 5112-5128 (1996) · doi:10.1103/PhysRevD.55.5112
[6] Bleher, P., Its, A., eds.: Random matrix and their applications, MSRI Research Publications 40, Cambridge Univ. Press, Combridge, 2001 · Zbl 0967.00059
[7] Blumenhagen, R.; Plauschinn, E., Introduction to conformal field theory: with applications to string theory (2009), Berlin Herdelberg · Zbl 1175.81001
[8] Bohigas, O., Random matrix theories and chaotic dynamics (1991), North-Holland
[9] Brezin, E.; Kazakov, V.; Serban, D.; etal., Applications of random matrices in physics (2006), Berlin · doi:10.1007/1-4020-4531-X
[10] Chekhov, L., Eynard, E.: Hermitian matrix model free energy: Feynman graph technique for all genera. J. High Energy Phys.,3, 014 (2006) · Zbl 1226.81137 · doi:10.1088/1126-6708/2006/03/014
[11] Chekhov, L., Eynard, B., Orantin, N.: Free energy topological expansion for the 2-matrix model. J. High Energy Phys.,12, 053 (2006) · Zbl 1226.81250 · doi:10.1088/1126-6708/2006/12/053
[12] David, F.: Planar diagrams, two-dimensional lattice gravity and surfaces models. Nucl. Phys. B,257, 45-58 (2010) · doi:10.1016/0550-3213(85)90335-9
[13] David, F.: Loop equations and nonperturbative effects in two-dimensional quantum gravity. Mod. Phys. Lett. A,5, 1019-1029 (1990) · Zbl 1020.81825 · doi:10.1142/S0217732390001141
[14] Eynard, E.: Topological expansion for the 1-hermitian matrix model correlation functions. J. High Energy Phys.,11, 031 (2004) · doi:10.1088/1126-6708/2004/11/031
[15] Eynard, B., Orantin, N.: Invariants of algebraic curves and topological expansion. Comm. Numb. Thoer. Phys.,1, 347-452 (2007) · Zbl 1161.14026 · doi:10.4310/CNTP.2007.v1.n2.a4
[16] Eynard, B., Orantin, N.: Topological recursion in enumerative geometry and random matrices. J. Phys. A,42, 1-117 (2009) · Zbl 1177.82049 · doi:10.1088/1751-8113/42/29/293001
[17] Eynard, E., An introduction to random matrices, Lectures given at Saclay, October 2000, note available at http://www-spht.cea.fr/articles/t01/014/
[18] Eynard, B., Orantin, N.: Toplogcial expansion of the 2-matrix model correlation functions: diagrammatic rules for a residue formula. J. High Energy Phys.,12, 034 (2005) · doi:10.1088/1126-6708/2005/12/034
[19] Eynard, B., Ferrer, A.: Topological expansion of the chain of matrices. J. High Energy Phys.,07, 096 (2009) · doi:10.1088/1126-6708/2009/07/096
[20] Eynard, B., Formal matrix integrals and combinatorics of maps (2006), New York · Zbl 1257.81052
[21] Ercolani, N. M., Mclarghlin, K.: Asymptotics and integrable systems for biorthogonal polynomials associated to a random two-matrix model. Physica D, 152-153, 232-268 (2001) · Zbl 1038.82042 · doi:10.1016/S0167-2789(01)00173-7
[22] Francesco, P. Di., Ginsparg, P., Zinn-Justin, Z.: 2D gravity and random matrices. Phys. Rept.,254, 1-133 (1993) · doi:10.1016/0370-1573(94)00084-G
[23] Gerasimov, A., Marshakov, A., Mironov, A., et al.: Matrix models of 2-D gravity and Toda theory. Nucl. Phys. B,357, 565-618 (1991) · doi:10.1016/0550-3213(91)90482-D
[24] Gross, D., Piran, T., Weinberg, T.: Two Dimensional Quantum Gravity and Random Surfaces (Jerusalem winter school), World Scientific, Singapore, 1992
[25] Ginsparg, P.; Moore, G., Lectures on 2D gravity and 2D string theory (1993)
[26] Guhr, T., Mueller-Groeling, A., Weidenmuller, H.: Random matrix theories in quantum physics: common concepts, Phys. Rep.,299, 189-425 (1998) · doi:10.1016/S0370-1573(97)00088-4
[27] Itoyama, H., Matsuo, Y.: Noncritical Virasoro algebra of the D < 1 matrix model and the quantized string field. Phys. Lett. B,255, 202-208 (1991) · doi:10.1016/0370-2693(91)90236-J
[28] Kharchev, S., Marshakov, A., Mironov, A., et al.: Conformal matrix models as an alternative to conventional multimatrix models. Nucl. Phys. B,404, 717-750 (1993) · Zbl 1009.81550 · doi:10.1016/0550-3213(93)90595-G
[29] Kostov, I., Matrix Models As Coformal Field Theories, 459-487 (2004) · Zbl 1139.81381
[30] Kac, V. G., Raina, A.: Bombay Lectures on Highest Weight Reprsentations of Infinite Dimensional Lie Alegebra, Advanced Series in Mathematical Physics 2 (1987) · Zbl 0668.17012
[31] Kontsevich, M.: Intersection theory on the moduli space of curves and the matrix airy function. Comm. Math. Phys.,147, 1-23 (1992) · Zbl 0756.35081 · doi:10.1007/BF02099526
[32] Macdonald, I. G.: Symmetric Functions and Hall Polynomials, 2nd Edition, Claredon Press, Oxford, 1995 · Zbl 0824.05059
[33] Marshakov, A., Mironov, A., Morozov, A.: Generalized matrix models as conformal field theories: discrete case. Phys. Lett. B,265, 99-107 (1991) · doi:10.1016/0370-2693(91)90021-H
[34] Mironov, A., Morozov, A.: On the origin of Virasoro constraints in matrix models: Lagrangian approach. Phys. Lett. B,252, 47-52 (1990) · doi:10.1016/0370-2693(90)91078-P
[35] Morozov, A.: Matrix model as integrable systems. In: Particles and Fields, CRM Series in Mathematical Physics, Springer, New York, 1999 · doi:10.1007/978-1-4612-1410-6_5
[36] Metha, M. L.: Random Matrices, Academic Press, New York, 1991 · Zbl 0780.60014
[37] Penner, R.: Perturbative series and the moduli spaces of Riemann surfaces. J. Diff. Geom.,27, 35-53 (1988) · Zbl 0608.30046 · doi:10.4310/jdg/1214441648
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.