×

Synchronization of master-slave Lagrangian systems via intermittent control. (English) Zbl 1374.70037

Summary: In this paper, synchronization of master-slave Lagrangian systems via intermittent control was developed. Based on the intermittent control, some algebraic criteria are derived to make the slave Lagrangian system synchronize to a master one. Different from the most existing results on control problems of Lagrangian systems, the controller proposed here is not continuous-time control input and is not relied on the knowledge of system models. As a direct application, the obtained results are applied to a typical two-link revolute jointed robot (robot manipulator). Subsequently, numerical simulations demonstrate the effectiveness of the criteria and the robustness of the control strategy.

MSC:

70G60 Dynamical systems methods for problems in mechanics
34D06 Synchronization of solutions to ordinary differential equations
70Q05 Control of mechanical systems
93C40 Adaptive control/observation systems
Full Text: DOI

References:

[1] Zhang, J., Tang, W.: Control and synchronization for a class of new chaotic systems via linear feedback. Nonlinear Dyn. 58, 675-686 (2009) · Zbl 1183.70075 · doi:10.1007/s11071-009-9509-9
[2] Naifar, O., Boukettaya, G., Ouali, A.: Robust software sensor with online estimation of stator resistance applied to WECS using IM. Int. J. Adv. Manuf. Tech. 84, 885-894 (2016)
[3] Das, S., Srivastava, M., Leung, A.Y.T.: Hybrid phase synchronization between identical and nonidentical three-dimensional chaotic systems using the active control method. Nonlinear Dyn. 73, 2261-2272 (2013) · Zbl 1281.34064 · doi:10.1007/s11071-013-0939-z
[4] Chung, S.J.: Nonlinear Control and Synchronization of Multiple Lagrangian Systems with Application to Tethered Formation Flight Spacecraft. Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge (2007)
[5] Kelly, R., Salgado, R.: PD control with computed feedforward of robot manipulators: a design procedure. IEEE Trans. Robot. Autom. 10, 566-571 (1994) · doi:10.1109/70.313108
[6] Santibañez, V., Kelly, R.: PD control with feedforward compensation for robot manipulators: analysis and experimentation. Robotica 19, 11-19 (2001) · doi:10.1017/S0263574700002848
[7] Santibanez, V., Kelly, R.: Global convergence of the adaptive PD controller with computed feedforward for robot manipulators. Int. Conf. Robot. Autom. 3, 1831-1836 (1999) · doi:10.1109/ROBOT.1999.770375
[8] Liu, H.: Global tracking for robot manipulators using a simple causal PD controller plus feedforward. Robotica 28, 23-34 (2010) · doi:10.1017/S0263574709005529
[9] Dixon, W., Zergeroglu, E., Dawson, D.: Global robust output feedback tracking control of robot manipulators. Robotica 22, 351-357 (2004)
[10] Purwar, S., Kar, I.N., Jha, A.N.: Adaptive output feedback tracking control of robot manipulators using position measurements only. Expert Syst. Appl. 34, 2789-2798 (2008) · doi:10.1016/j.eswa.2007.05.030
[11] Stamnes, Ø.N., Aamo, O.M., Kaasa, G.O.: Global output feedback tracking control of Euler-Lagrange systems. IFAC Proc. 44, 215-220 (2011) · Zbl 1228.93024 · doi:10.3182/20110828-6-IT-1002.00678
[12] Hu, Q., Xu, L., Zhang, A.: Adaptive backstepping trajectory tracking control of robot manipulator. J. Frankl. Inst. 349, 1087-1105 (2012) · Zbl 1273.93094 · doi:10.1016/j.jfranklin.2012.01.001
[13] Kristiansen, R.: Dynamics synchronization of spacecraft. Ph.D. Thesis. Norwegian University of Science and Technology, Tapir Uttrykk (2008)
[14] Huang, J., Yang, C., Ye, J.: Nonlinear pd controllers with gravity compensation for robot manipulators. Cybern. Inf. Technol. 14, 141-150 (2014)
[15] Chaudhary, H., Panwar, V., Prasad, R., et al.: Adaptive neuro fuzzy based hybrid force/position control for an industrial robot manipulator. J. Intell. Manuf. 27, 1299-1308 (2016) · doi:10.1007/s10845-014-0952-1
[16] Li, Y.N., Ge, S.S.: Force tracking control for motion synchronization in human-robot collaboration. Robotica 34, 1-22 (2016)
[17] Zochowski, M.: Intermittent dynamical control. Phys. D 45, 181-190 (2000) · Zbl 0963.34030 · doi:10.1016/S0167-2789(00)00112-3
[18] Zhang, W., Huang, J., Wei, P.: Weak synchronization of chaotic neural networks with parameter mismatch via periodically intermittent control. Appl. Math. Model. 35, 612-620 (2011) · Zbl 1205.93125 · doi:10.1016/j.apm.2010.07.009
[19] Hu, C., Yu, J.: Generalized intermittent control and its adaptive strategy on stabilization and synchronization of chaotic systems. Chaos Solitons Fractals 91, 262-269 (2016) · Zbl 1372.93109 · doi:10.1016/j.chaos.2016.06.004
[20] Huang, T.G., Li, C.D.: Chaotic synchronization by the intermittent feedback method. J. Comput. Appl. Math. 234, 1097-1104 (2010) · Zbl 1195.65212 · doi:10.1016/j.cam.2009.05.020
[21] Huang, J., Wei, P.: Lag synchronization in coupled chaotic systems via intermittent control. Procedia Eng. 15, 568-572 (2011) · doi:10.1016/j.proeng.2011.08.107
[22] Wang, Y.J., Hao, J.N., Zuo, J.C.: A new method for exponential synchronization of chaotic delayed systems via intermittent control. Phys. Lett. A 374, 2024-2029 (2010) · Zbl 1236.34073 · doi:10.1016/j.physleta.2010.02.069
[23] Huang, J., Li, C., Huang, T., et al.: Lag quasisynchronization of coupled delayed systems with parameter mismatch by periodically intermittent control. Nonlinear Dyn. 71, 469-478 (2013) · Zbl 1268.34097 · doi:10.1007/s11071-012-0673-y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.