×

Improving bipartite graph edit distance approximation using various search strategies. (English) Zbl 1374.68473

Summary: Recently the authors of the present paper introduced an approximation framework for the graph edit distance problem. The basic idea of this approximation is to first build a square cost matrix \(\mathbf{C} = (c_{ij})\), where each entry \(c_{ij}\) reflects the cost of a node substitution, deletion or insertion plus the matching cost arising from the local edge structure. Based on \({\mathbf C}\) an optimal assignment of the nodes and their local structure can be established in polynomial time. Since this approach considers local – rather than the global – structural properties of the graphs only, the graph edit distance derived from the optimal node assignment generally overestimates the true edit distance. The present paper pursues the idea of applying additional search strategies that build upon the initial assignment in order to reduce this overestimation. To this end, six different search strategies are investigated in this paper. In an exhaustive experimental evaluation on five real world graph data sets we empirically verify a substantial gain of distance accuracy by means of all search methods while run time remains remarkably low.

MSC:

68T10 Pattern recognition, speech recognition
05C12 Distance in graphs
68T20 Problem solving in the context of artificial intelligence (heuristics, search strategies, etc.)

Software:

CLUSTISZ
Full Text: DOI

References:

[1] Conte, D.; Foggia, P.; Sansone, C.; Vento, M., Thirty years of graph matching in pattern recognition, Int. J. Pattern Recognit. Artif. Intell., 18, 3, 265-298 (2004)
[3] Sanfeliu, A.; Fu, K., A distance measure between attributed relational graphs for pattern recognition, IEEE Trans. Syst. Man Cybernet. (Part B), 13, 3, 353-363 (1983) · Zbl 0511.68060
[4] Bunke, H.; Allermann, G., Inexact graph matching for structural pattern recognition, Pattern Recognit. Lett., 1, 245-253 (1983) · Zbl 0509.68100
[5] Gao, X.; Xiao, B.; Tao, D.; Li, X., A survey of graph edit distance, Pattern Anal. Appl., 13, 1, 113-129 (2010) · Zbl 1422.68211
[8] Justice, D.; Hero, A., A binary linear programming formulation of the graph edit distance, IEEE Trans. Pattern Anal. Mach. Intell., 28, 8, 1200-1214 (2006)
[9] Jiang, X.; Bunke, H., Optimal quadratic-time isomorphism of ordered graphs, Pattern Recognit., 32, 17, 1273-1283 (1999)
[11] Torsello, A.; Hidovic-Rowe, D.; Pelillo, M., Polynomial-time metrics for attributed trees, IEEE Trans. Pattern Anal. Mach. Intell., 27, 7, 1087-1099 (2005)
[13] Riesen, K.; Bunke, H., Approximate graph edit distance computation by means of bipartite graph matching, Image Vision Comput., 27, 4, 950-959 (2009)
[14] Burkard, R.; Dell׳Amico, M.; Martello, S., Assignment Problems (2009), Society for Industrial and Applied Mathematics: Society for Industrial and Applied Mathematics Philadelphia, PA, USA · Zbl 1196.90002
[19] Hart, P.; Nilsson, N.; Raphael, B., A formal basis for the heuristic determination of minimum cost paths, IEEE Trans. Syst. Sci. Cybern., 4, 2, 100-107 (1968)
[21] Berretti, S.; Del Bimbo, A.; Vicario, E., Efficient matching and indexing of graph models in content-based retrieval, IEEE Trans. Pattern Anal. Mach. Intell., 23, 10, 1089-1105 (2001)
[23] Kuhn, H., The Hungarian method for the assignment problem, Naval Res. Log. Q., 2, 83-97 (1955) · Zbl 0143.41905
[24] Jonker, R.; Volgenant, A., A shortest augmenting path algorithm for dense and sparse linear assignment problems, Computing, 38, 325-340 (1987) · Zbl 0607.90056
[25] Orlin, J., On the simplex algorithm for networks and generalized networks, Math. Program. Stud., 24, 166-178 (1985) · Zbl 0592.90031
[26] Ahuja, R.; Orlin, J., The scaling network simplex algorithm, Oper. Res., 40, 1, 5-13 (1992) · Zbl 0825.90769
[27] Srinivasan, V.; Thompson, G., Cost operator algorithms for the transportation problem, Math. Program., 12, 372-391 (1977) · Zbl 0362.90058
[29] Serratosa, F., Fast computation of bipartite graph matching, Pattern Recognit. Lett., 45, 244-250 (2014)
[30] Pudil, P.; Novovicova, J.; Kittler, J., Floating search methods in feature-selection, Pattern Recognit. Lett., 15, 11, 1119-1125 (1994)
[31] Cross, A.; Wilson, R.; Hancock, E., Inexact graph matching using genetic search, Pattern Recognit., 30, 6, 953-970 (1997)
[32] Wang, I.; Fan, K.-C.; Horng, J.-T., Genetic-based search for error-correcting graph isomorphism, IEEE Trans. Syst. Man Cybern. (Part B), 27, 4, 588-597 (1997)
[33] Suganthan, P., Structural pattern recognition using genetic algorithms, Pattern Recognit., 35, 9, 1883-1893 (2002) · Zbl 1006.68873
[36] Jain, A.; Dubes, R., Algorithms For Clustering Data (1988), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0665.62061
[37] Dunn, J., Well-separated clusters and optimal fuzzy partitions, J. Cybern., 4, 95-104 (1974) · Zbl 0304.68093
[38] Hubert, L.; Schultz, J., Quadratic assignment as a general data analysis strategy, Br. J. Math. Stat. Psychol., 29, 190-241 (1976) · Zbl 0356.92027
[39] Davies, D.; Bouldin, D., A cluster separation measure, IEEE Trans. Pattern Anal. Mach. Intell., 1, 2, 224-227 (1979)
[40] Calinski, T.; Harabasz, J., A dendrite method for cluster analysis, Commun. Stat., 3, 1, 1-27 (1974) · Zbl 0273.62010
[42] Xie, X.; Beni, G., A validity measure for fuzzy clustering, IEEE Trans. Pattern Anal. Mach. Intell., 13, 4, 841-846 (1991)
[43] Goodman, L.; Kruskal, W., Measures of Association for Cross Classification (1979), Springer: Springer New York · Zbl 0426.62034
[45] Pekalska, E.; Duin, R., The Dissimilarity Representation for Pattern Recognition: Foundations and Applications (2005), World Scientific: World Scientific Singapore · Zbl 1095.68105
[46] Riesen, K.; Bunke, H., Graph classification based on vector space embedding, Int. J. Pattern Recognit. Artif. Intell., 23, 6, 1053-1081 (2008)
[47] Neuhaus, M.; Bunke, H., Bridging the Gap Between Graph Edit Distance and Kernel Machines (2007), World Scientific: World Scientific Singapore · Zbl 1140.68473
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.