×

Convergence analysis of a family of robust Kalman filters based on the contraction principle. (English) Zbl 1374.60074

Summary: In this paper, we analyze the convergence of a family of robust Kalman filters. For each filter of this family, the model uncertainty is tuned according to the so-called tolerance parameter. Assuming that the corresponding state-space model is reachable and observable, we show that the \(N\)-fold composition of the corresponding Riccati-like mapping is strictly contractive provided that the tolerance is sufficiently small and, accordingly, the filter converges.

MSC:

60G35 Signal detection and filtering (aspects of stochastic processes)
93B35 Sensitivity (robustness)
93E11 Filtering in stochastic control theory

References:

[1] J. Aubin and I. Ekeland, {\it Applied Nonlinear Analysis}, J. Wiley, New York, 1984. · Zbl 0641.47066
[2] R. Bhatia, {\it On the exponential metric increasing property}, Linear Algebra Appl., 375 (2003), pp. 211-220. · Zbl 1052.15013
[3] R. Boel, M. James, and I. Petersen, {\it Robustness and risk-sensitive filtering}, IEEE Trans. Automat. Control, 47 (2002), pp. 451-461. · Zbl 1364.93792
[4] P. Bougerol, {\it Kalman filtering with random coefficients and contractions}, SIAM J. Control Optim., 31 (1993), pp. 942-959. · Zbl 0785.93040
[5] A. Ferrante and B. Levy, {\it Hermitian solutions of the equation \(x=q+nx^{-1}n^*\) ˆ—}, Linear Algebra Appl., 247 (1996), pp. 359-373. · Zbl 0876.15011
[6] A. Ferrante and L. Ntogramatzidis, {\it The generalised discrete algebraic Riccati equation in linear-quadratic optimal control}, Automatica, 49 (2013), pp. 471-478. · Zbl 1259.49052
[7] A. Ferrante and L. Ntogramatzidis, {\it The generalized continuous algebraic Riccati equation and impulse-free continuous-time LQ optimal control}, Automatica, 50 (2014), pp. 1176-1180. · Zbl 1421.49030
[8] S. Gaubert and Z. Qu, {\it The contraction rate in Thompson’s part Metric of order-preserving flows on a cone–application to generalized Riccati equations}, J. Differential Equations, 256 (2014), pp. 2902-2948. · Zbl 1291.93327
[9] L. Hansen and T. Sargent, {\it Robustness}, Princeton University Press, Princeton, NJ, 2008. · Zbl 1134.93001
[10] B. Hassibi, A. Sayed, and T. Kailath, {\it Linear estimation in Krein spaces. I. Theory}, IEEE Trans. Automat. Control, 41 (1996), pp. 18-33. · Zbl 0862.93055
[11] B. Hassibi, A. Sayed, and T. Kailath, {\it Linear estimation in Krein spaces. II. Applications}, IEEE Trans. Automat. Control, 41 (1996), pp. 34-49. · Zbl 0862.93056
[12] B. Hassibi, A. Sayed, and T. Kailath, {\it Indefinite-Quadratic Estimation and Control–A Unified Approach to \(H^2\) and \(H^∞\) Theories}, SIAM, Philadelphia, PA, 1999. · Zbl 0997.93506
[13] J. Lawson and Y. Lim, {\it The symplectic semigroup and Riccati differential equations}, J. Dynam. Control Syst., 12 (2006), pp. 49-77. · Zbl 1118.49029
[14] J. Lawson and Y. Lim, {\it A Birkhoff contraction formula with applications to Riccati equations}, SIAM J. Control Optimiz., 46 (2007), pp. 930-951. · Zbl 1357.49132
[15] H. Lee and Y. Lim, {\it Invariant metrics, contractions and nonlinear matrix equations}, Nonlinearity, 2 (2008), pp. 857-878. · Zbl 1153.15020
[16] B. Levy and R. Nikoukhah, {\it Robust least-squares estimation with a relative entropy constraint}, IEEE Trans. Inform. Theory, 50 (2004), pp. 89-104. · Zbl 1301.94047
[17] B. Levy and R. Nikoukhah, {\it Robust state-space filtering under incremental model perturbations subject to a relative entropy tolerance}, IEEE Trans. Automat. Control, 58 (2013), pp. 682-695. · Zbl 1369.93636
[18] B. C. Levy and M. Zorzi, {\it A contraction analysis of the convergence of risk-sensitive filters}, SIAM J. Control Optim., 54 (2016), pp. 2154-2173. · Zbl 1346.60055
[19] J. Speyer, C. Fan, and R. Banavar, {\it Optimal stochastic estimation with exponential cost criteria}, in Proceedings of the 31st IEEE Conference on Decision Control, Tucson, AZ, 1992, pp. 2293-2298.
[20] A. Thompson, {\it On certain contraction mappings in a partially ordered vector space}, Proc. Amer. Math. Soc., 14 (1963), pp. 438-443. · Zbl 0147.34903
[21] P. Whittle, {\it Risk-Sensitive Optimal Control}, J. Wiley, Chichester, England, 1980. · Zbl 0718.93068
[22] A. Zenere and M. Zorzi, {\it Model predictive control meets robust Kalman filtering}, in Proceedings of the 20th IFAC World Congress, Toulouse, France, 2017.
[23] M. Zorzi, {\it A new family of high-resolution multivariate spectral estimators}, IEEE Trans. Automat. Control, 59 (2014), pp. 892-904. · Zbl 1360.62467
[24] M. Zorzi, {\it Rational approximations of spectral densities based on the alpha divergence}, Math. Control Signals Systems, 26 (2014), pp. 259-278. · Zbl 1290.93172
[25] M. Zorzi, {\it An interpretation of the dual problem of the THREE-like approaches}, Automatica, 62 (2015), pp. 87-92. · Zbl 1329.93132
[26] M. Zorzi, {\it Multivariate spectral estimation based on the concept of optimal prediction}, IEEE Trans. Automat. Control, 60 (2015), pp. 1647-1652. · Zbl 1360.62285
[27] M. Zorzi, {\it On the robustness of the Bayes and Wiener estimators under model uncertainty}, Automatica, 83 (2017), pp. 133-140. · Zbl 1373.93334
[28] M. Zorzi, {\it Robust Kalman filtering under model perturbations}, IEEE Trans. Automat. Control, 62 (2017), pp. 2902-2907. · Zbl 1369.93666
[29] M. Zorzi and B. C. Levy, {\it On the convergence of a risk sensitive like filter}, in 54th IEEE Conference on Decision and Control (CDC), December 2015, pp. 4990-4995.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.