×

Large-\(N\) correlation functions in \( \mathcal{N} = 2\) superconformal QCD. (English) Zbl 1373.81310

Summary: We study extremal correlation functions of chiral primary operators in the large-\(N\) \(SU(N) \;\mathcal{N} = 2\) superconformal QCD theory and present new results based on supersymmetric localization. We discuss extensively the basis-independent data that can be extracted from these correlators using the leading order large-\(N\) matrix model free energy given by the four-sphere partition function. Special emphasis is given to singletrace 2- and 3-point functions as well as a new class of observables that are scalars on the conformal manifold. These new observables are particular quadratic combinations of the structure constants of the chiral ring. At weak ’t Hooft coupling we present perturbative results that, in principle, can be extended to arbitrarily high order. We obtain closed-form expressions up to the first subleading order. At strong coupling we provide analogous results based on an approximate Wiener-Hopf method.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81V05 Strong interaction, including quantum chromodynamics

References:

[1] M. Baggio, V. Niarchos and K. Papadodimas, tt∗equations, localization and exact chiral rings in 4dN \[\mathcal{N} = 2\] SCFTs, JHEP02 (2015) 122 [arXiv:1409.4212] [INSPIRE]. · Zbl 1388.81477
[2] M. Baggio, V. Niarchos and K. Papadodimas, Exact correlation functions in SU \[(2) N \mathcal{N} = 2\] superconformal QCD, Phys. Rev. Lett.113 (2014) 251601 [arXiv:1409.4217] [INSPIRE]. · doi:10.1103/PhysRevLett.113.251601
[3] K. Papadodimas, Topological Anti-Topological Fusion in Four-Dimensional Superconformal Field Theories, JHEP08 (2010) 118 [arXiv:0910.4963] [INSPIRE]. · Zbl 1290.81077 · doi:10.1007/JHEP08(2010)118
[4] V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys.313 (2012) 71 [arXiv:0712.2824] [INSPIRE]. · Zbl 1257.81056 · doi:10.1007/s00220-012-1485-0
[5] E. Gerchkovitz, J. Gomis and Z. Komargodski, Sphere Partition Functions and the Zamolodchikov Metric, JHEP11 (2014) 001 [arXiv:1405.7271] [INSPIRE]. · Zbl 1333.81171 · doi:10.1007/JHEP11(2014)001
[6] E. Gerchkovitz, J. Gomis, N. Ishtiaque, A. Karasik, Z. Komargodski and S.S. Pufu, Correlation Functions of Coulomb Branch Operators, arXiv:1602.05971 [INSPIRE]. · Zbl 1373.81324
[7] M. Dedushenko, S.S. Pufu and R. Yacoby, A one-dimensional theory for Higgs branch operators, arXiv:1610.00740 [INSPIRE]. · Zbl 1388.81803
[8] E. Kiritsis and V. Niarchos, Large-N limits of 2d CFTs, Quivers and AdS3duals, JHEP04 (2011) 113 [arXiv:1011.5900] [INSPIRE]. · Zbl 1250.81086 · doi:10.1007/JHEP04(2011)113
[9] A. Gadde, E. Pomoni and L. Rastelli, The Veneziano Limit of N = 2 Superconformal QCD: Towards the String Dual of N = 2SU(Nc) SYM with Nf = 2Nc, arXiv:0912.4918 [INSPIRE]. · Zbl 0947.81121
[10] S. Kachru and E. Silverstein, 4 − D conformal theories and strings on orbifolds, Phys. Rev. Lett.80 (1998) 4855 [hep-th/9802183] [INSPIRE]. · Zbl 0947.81096 · doi:10.1103/PhysRevLett.80.4855
[11] J. Louis, H. Triendl and M. Zagermann, \[N \mathcal{N} = 4\] supersymmetric AdS5vacua and their moduli spaces, JHEP10 (2015) 083 [arXiv:1507.01623] [INSPIRE]. · Zbl 1388.83857 · doi:10.1007/JHEP10(2015)083
[12] D. Rodriguez-Gomez and J.G. Russo, Large-N Correlation Functions in Superconformal Field Theories, JHEP06 (2016) 109 [arXiv:1604.07416] [INSPIRE]. · Zbl 1388.81069 · doi:10.1007/JHEP06(2016)109
[13] D. Rodriguez-Gomez and J.G. Russo, Operator mixing in large-N superconformal field theories on S4and correlators with Wilson loops, JHEP12 (2016) 120 [arXiv:1607.07878] [INSPIRE]. · Zbl 1390.81539 · doi:10.1007/JHEP12(2016)120
[14] S. Lee, S. Minwalla, M. Rangamani and N. Seiberg, Three point functions of chiral operators in D = 4, N = 4 SYM at large-N , Adv. Theor. Math. Phys.2 (1998) 697 [hep-th/9806074] [INSPIRE]. · Zbl 0923.53033 · doi:10.4310/ATMP.1998.v2.n4.a1
[15] E. D’Hoker, D.Z. Freedman and W. Skiba, Field theory tests for correlators in the AdS/CFT correspondence, Phys. Rev.D 59 (1999) 045008 [hep-th/9807098] [INSPIRE].
[16] E. D’Hoker, D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Extremal correlators in the AdS/CFT correspondence, hep-th/9908160 [INSPIRE]. · Zbl 0989.83060
[17] F. Passerini and K. Zarembo, Wilson Loops in N = 2 super-Yang-Mills from Matrix Model, JHEP09 (2011) 102 [Erratum ibid.1110 (2011) 065] [arXiv:1106.5763] [INSPIRE]. · Zbl 1301.81238
[18] M. Baggio, V. Niarchos and K. Papadodimas, On exact correlation functions in SU \[(N ) N \mathcal{N} =2\] superconformal QCD, JHEP11 (2015) 198 [arXiv:1508.03077] [INSPIRE]. · Zbl 1388.81025 · doi:10.1007/JHEP11(2015)198
[19] J. Gomis and N. Ishtiaque, Kähler potential and ambiguities in 4dN \[\mathcal{N} = 2\] SCFTs, JHEP04 (2015) 169 [arXiv:1409.5325] [INSPIRE]. · doi:10.1007/JHEP04(2015)169
[20] J. Gomis, P.-S. Hsin, Z. Komargodski, A. Schwimmer, N. Seiberg and S. Theisen, Anomalies, Conformal Manifolds and Spheres, JHEP03 (2016) 022 [arXiv:1509.08511] [INSPIRE]. · Zbl 1388.81820 · doi:10.1007/JHEP03(2016)022
[21] M. Bianchi, S. Kovacs, G. Rossi and Y.S. Stanev, On the logarithmic behavior in N = 4 SYM theory, JHEP08 (1999) 020 [hep-th/9906188] [INSPIRE]. · doi:10.1088/1126-6708/1999/08/020
[22] G. Arutyunov, S. Frolov and A.C. Petkou, Operator product expansion of the lowest weight CPOs inN \[\mathcal{N} = 4\] SYM4at strong coupling, Nucl. Phys.B 586 (2000) 547 [Erratum ibid.B 609 (2001) 539] [hep-th/0005182] [INSPIRE]. · Zbl 1043.81709
[23] K.A. Intriligator, Bonus symmetries of N = 4 super Yang-Mills correlation functions via AdS duality, Nucl. Phys.B 551 (1999) 575 [hep-th/9811047] [INSPIRE]. · Zbl 0947.81121 · doi:10.1016/S0550-3213(99)00242-4
[24] K.A. Intriligator and W. Skiba, Bonus symmetry and the operator product expansion of N = 4 Super Yang-Mills, Nucl. Phys.B 559 (1999) 165 [hep-th/9905020] [INSPIRE]. · Zbl 0957.81078 · doi:10.1016/S0550-3213(99)00430-7
[25] B. Eden, P.S. Howe and P.C. West, Nilpotent invariants in N = 4 SYM, Phys. Lett.B 463 (1999) 19 [hep-th/9905085] [INSPIRE]. · Zbl 0987.81102 · doi:10.1016/S0370-2693(99)00705-4
[26] A. Petkou and K. Skenderis, A nonrenormalization theorem for conformal anomalies, Nucl. Phys.B 561 (1999) 100 [hep-th/9906030] [INSPIRE]. · Zbl 0958.81161 · doi:10.1016/S0550-3213(99)00514-3
[27] P.S. Howe, C. Schubert, E. Sokatchev and P.C. West, Explicit construction of nilpotent covariants in N = 4 SYM, Nucl. Phys.B 571 (2000) 71 [hep-th/9910011] [INSPIRE]. · Zbl 1028.81525 · doi:10.1016/S0550-3213(99)00768-3
[28] P.J. Heslop and P.S. Howe, OPEs and three-point correlators of protected operators in N = 4 SYM, Nucl. Phys.B 626 (2002) 265 [hep-th/0107212] [INSPIRE]. · Zbl 0985.81070 · doi:10.1016/S0550-3213(02)00023-8
[29] M. Baggio, J. de Boer and K. Papadodimas, A non-renormalization theorem for chiral primary 3-point functions, JHEP07 (2012) 137 [arXiv:1203.1036] [INSPIRE]. · Zbl 1397.83176 · doi:10.1007/JHEP07(2012)137
[30] C. Beem, M. Lemos, P. Liendo, L. Rastelli and B.C. van Rees, TheN \[\mathcal{N} = 2\] superconformal bootstrap, JHEP03 (2016) 183 [arXiv:1412.7541] [INSPIRE]. · Zbl 1388.81482 · doi:10.1007/JHEP03(2016)183
[31] M. Mariño, Lectures on localization and matrix models in supersymmetric Chern-Simons-matter theories, J. Phys.A 44 (2011) 463001 [arXiv:1104.0783] [INSPIRE]. · Zbl 1270.81235
[32] B. Eynard, T. Kimura and S. Ribault, Random matrices, arXiv:1510.04430 [INSPIRE]. · Zbl 1397.83176
[33] G. Borot, B. Eynard and N. Orantin, Abstract loop equations, topological recursion and new applications, Commun. Num. Theor. Phys.09 (2015) 51 [arXiv:1303.5808] [INSPIRE]. · Zbl 1329.14074 · doi:10.4310/CNTP.2015.v9.n1.a2
[34] V. Novokshenov, Convolution equations on a finite segment and factorization of elliptic matrices, Math. Notes Acad. Sci. USSR27 (1980) 463001. · Zbl 0464.45003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.