×

An information-based classification of elementary cellular automata. (English) Zbl 1373.68294

Summary: We propose a novel, information-based classification of elementary cellular automata. The classification scheme proposed circumvents the problems associated with isolating whether complexity is in fact intrinsic to a dynamical rule, or if it arises merely as a product of a complex initial state. Transfer entropy variations processed by cellular automata split the 256 elementary rules into three information classes, based on sensitivity to initial conditions. These classes form a hierarchy such that coarse-graining transitions observed among elementary rules predominately occur within each information-based class or, much more rarely, down the hierarchy.

MSC:

68Q80 Cellular automata (computational aspects)
94A17 Measures of information, entropy

References:

[1] Israeli, N.; Goldenfeld, N., Coarse-graining of cellular automata, emergence, and the predictability of complex systems, Physical Review E. Statistical, Nonlinear, and Soft Matter Physics, 73, 2 (2006) · doi:10.1103/PhysRevE.73.026203
[2] Gardner, M., Mathematical games, Scientific American, 223, 120-123 (1970)
[3] Berlekamp, E. R.; Conway, J. H.; Guy, R. K., Winning Ways for Your Mathematical Plays, Vol. 2: Games in Particular, 2 (1982), London, UK: Academic Press, London, UK · Zbl 0485.00025
[4] Gardner, M., Wheels, Life, and other Mathematical Amusements (1983), NY, USA: Freeman & Company, NY, USA · Zbl 0537.00002
[5] Smith, I., Simple computation-universal cellular spaces, Journal of the Association for Computing Machinery, 18, 339-353 (1971) · Zbl 0221.94071 · doi:10.1145/321650.321652
[6] Lindgren, K.; Nordahl, M. G., Complex Systems, 4, 299-318 (1990) · Zbl 0724.68072
[7] Cook, M., Universality in elementary cellular automata, Complex Systems, 15, 1, 1-40 (2004) · Zbl 1167.68387
[8] Wolfram, S., Cellular automata as models of complexity, Nature, 311, 5985, 419-424 (1984) · doi:10.1038/311419a0
[9] von Neumann, J., Theory of Self-Reproducing Automata (1966), Urbana, ILL, USA: A. W. Burks University of Illinois Press, Urbana, ILL, USA
[10] Culik, K.; Yu, S., Undecidability of CA classification schemes, Complex Systems, 2, 177-190 (1988) · Zbl 0657.68054
[11] Li, W.; Packard, N., Erratum: “The structure of the elementary cellular automata rule space”, Complex Systems, 4, 1, 281-297 (1990) · Zbl 0724.68071
[12] Langton, C. G., Computation at the edge of chaos: phase transitions and emergent computation, Physica D: Nonlinear Phenomena, 42, 1-3, 12-37 (1990) · doi:10.1016/0167-2789(90)90064-v
[13] Bagnoli, F.; Rechtman, R.; Ruffo, S., Damage spreading and Lyapunov exponents in cellular automata, Physics Letters A, 172, 1-2, 34-38 (1992) · doi:10.1016/0375-9601(92)90185-O
[14] Vichniac, G. Y., Boolean derivatives on cellular automata, Physica D. Nonlinear Phenomena, 45, 1-3, 63-74 (1990) · Zbl 0715.68065 · doi:10.1016/0167-2789(90)90174-N
[15] Baetens, J. M.; De Baets, B., Phenomenological study of irregular cellular automata based on Lyapunov exponents and Jacobians, Chaos. An Interdisciplinary Journal of Nonlinear Science, 20, 3 (2010) · Zbl 1311.37004 · doi:10.1063/1.3460362
[16] Baetens, J. M.; Van Der Weeën, P.; De Baets, B., Effect of asynchronous updating on the stability of cellular automata, Chaos, Solitons and Fractals, 45, 4, 383-394 (2012) · Zbl 1269.68065 · doi:10.1016/j.chaos.2012.01.002
[17] Baetens, J. M.; De Baets, B., Topology-induced phase transitions in totalistic cellular automata, Physica D. Nonlinear Phenomena, 249, 16-24 (2013) · Zbl 1279.37014 · doi:10.1016/j.physd.2013.01.004
[18] Baetens, J. M.; Gravner, J., Stability of cellular automata trajectories revisited: branching walks and Lyapunov profiles, Journal of Nonlinear Science, 26, 5, 1329-1367 (2016) · Zbl 1353.60077 · doi:10.1007/s00332-016-9307-8
[19] Chua, L. O.; Yoon, S.; Dogaru, R., A nonlinear dynamics perspective of Wolfram’s new kind of science. I. Threshold of complexity, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 12, 12, 2655-2766 (2002) · Zbl 1043.37009 · doi:10.1142/S0218127402006333
[20] Fatés, N., Experimental study of elementary cellular automata dynamics using the density parameter, Discrete Mathematics and Theoretical Computer Science, 15-166 (2003) · Zbl 1073.68687
[21] Dürr, C.; Rapaport, I.; Theyssier, G., Theoretical Computer Science, 322, 355-368 (2004) · Zbl 1068.68087
[22] Zenil, H.; Villarreal-Zapata, E., Asymptotic behavior and ratios of complexity in cellular automata, International Journal of Bifurcation and Chaos, 23, 9 (2013) · Zbl 1277.37026 · doi:10.1142/S0218127413501599
[23] Albantakis, L.; Tononi, G., The intrinsic cause-effect power of discrete dynamical systems-from elementary cellular automata to adapting animats, Entropy, 17, 8, 5472-5502 (2015) · doi:10.3390/e17085472
[24] MartÍnez, G. J., A note on elementary cellular automata classification, Journal of Cellular Automata, 8, 3-4, 233-259 (2013) · Zbl 1280.68133
[25] Bialek, W., Biophysics: searching for principles (2012), Princeton University Press
[26] Walker, S. I.; Kim, H.; Davies, P. C. W., The informational architecture of the cell, Philosophical Transactions of the Royal Society A, 374 (2016)
[27] Schreiber, T., Measuring information transfer, Physical Review Letters, 85, 2, 461-464 (2000) · doi:10.1103/physrevlett.85.461
[28] Wolfram Alpha, https://www.wolframalpha.com
[29] Lizier, J. T.; Prokopenko, M.; Zomaya, A. Y., The information dynamics of phase transitions in random boolean networks, Proceedings of the 11th International Conference on the Simulation and Synthesis of Living Systems: Artificial Life XI, ALIFE 2008
[30] Lizier, J. T.; Prokopenko, M., The European Physical Journal B, 73 (2010)
[31] Wang, X. R.; Miller, J. M.; Lizier, J. T.; Prokopenko, M.; Rossi, L. F., Measuring information storage and transfer in swarms, Proceedings of the Eleventh European Conference on the Synthesis and Simulation of Living Systems
[32] Bossomaier, T.; Barnett, L.; Harré, M.; Lizier, J. T., An Introduction to Transfer Entropy: Information Flow in Complex Systems (2016), Springer · Zbl 1410.62002
[33] Wolfram, S., Statistical mechanics of cellular automata, Reviews of Modern Physics, 55, 3, 601-644 (1983) · Zbl 1174.82319 · doi:10.1103/RevModPhys.55.601
[34] Wolfram, S., A New Kind of Science (2002), Champaign, ILL, USA: Wolfram Media, Champaign, ILL, USA · Zbl 1022.68084
[35] Nurse, P., Life, logic and information, Nature, 454, 7203, 424-426 (2008) · doi:10.1038/454424a
[36] Davies, P. C. W.; Walker, S. I., The hidden simplicity of biology, Reports on Progress in Physics, 79, 10 (2016) · doi:10.1088/0034-4885/79/10/102601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.