×

Polynomial interpolation on interlacingrectangular grids. (English) Zbl 1373.65010

Summary: In this paper we establish the unisolvence of any interlacing pair of rectangular grids of points with respect to a large class of associated polynomial spaces. This includes interpolation on Padua points and the schemes of C. R. Morrow and T. N. L. Patterson [SIAM J. Numer. Anal. 15, 953–976 (1978; Zbl 0402.65013)], Y. Xu [J. Approx. Theory 87, No. 2, 220–238 (1996; Zbl 0864.41002)], and W. Erb et al. [Numer. Math. 133, No. 4, 685–705 (2016; Zbl 1350.41008)]. We use Newton polynomials and divided differences and an apparently new formula for determinants of certain divided difference matrices.

MSC:

65D05 Numerical interpolation
41A05 Interpolation in approximation theory
41A10 Approximation by polynomials
41A63 Multidimensional problems
65D25 Numerical differentiation
65F40 Numerical computation of determinants

References:

[1] de Boor, C., Divided differences, Surv. Approx., 1, 46-69 (2005) · Zbl 1071.65027
[2] Bos, L.; Caliari, M.; De Marchi, S.; Vianello, M.; Xu, Y., Bivariate Lagrange interpolation at the Padua points: the generating curve approach, J. Approx. Theory, 143, 15-25 (2006) · Zbl 1113.41001
[3] Bos, L.; De Marchi, S.; Waldron, S., On the Vandermonde determinant of Padua-like points, Dolomites Res. Notes Approx., 2, 1-15 (2009)
[4] Caliari, M.; De Marchi, S.; Vianello, M., Bivariate Lagrange interpolation on the square at new nodal sets, Appl. Math. Comput., 165, 261-274 (2005) · Zbl 1081.41001
[5] Caliari, M.; De Marchi, S.; Vianello, M., Bivariate Lagrange interpolation at the Padua points: computational aspects, J. Comput. Appl. Math., 221, 284-292 (2008) · Zbl 1152.65018
[6] Dyn, N.; Floater, M. S., Multivariate polynomial interpolation on lower sets, J. Approx. Theory, 177, 34-42 (2014) · Zbl 1480.41001
[7] Erb, W., Bivariate Lagrange interpolation at the node points of Lissajous curves - the degenerate case, Appl. Math. Comput., 289, 409-425 (2016) · Zbl 1410.65016
[8] Erb, W.; Kaethner, C.; Ahlborg, M.; Buzug, T. M., Bivariate Lagrange interpolation at the node points of non-degenerate Lissajous curves, Numer. Math., 133, 685-705 (2016) · Zbl 1350.41008
[9] Isaacson, E.; Keller, H. B., Analysis of Numerical Methods (1994), Dover · Zbl 0168.13101
[10] Karlin, S., Total Positivity, Vol. I (1968), Stanford University Press: Stanford University Press Stanford, California · Zbl 0219.47030
[11] De Marchi, S.; Usevich, K., On certain multivariate Vandermonde determinants whose variables separate, Linear Algebra Appl., 449, 17-27 (2014) · Zbl 1303.15008
[12] Morrow, C. R.; Patterson, T. N.L., Construction of algebraic cubature rules using polynomial ideal theory, SIAM J. Numer. Anal., 15, 953-976 (1978) · Zbl 0402.65013
[13] Pierro de Carmago, A.; De Marchi, S., A few remarks on “On certain Vandermonde determinants whose variables separate”, Dolomites Res. Notes Approx., 8, 1-11 (2015) · Zbl 1370.15004
[14] Xu, Yuan, Lagrange interpolation on Chebyshev points of two variables, J. Approx. Theory, 87, 220-238 (1996) · Zbl 0864.41002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.