×

On computer-assisted proving the existence of periodic and bounded orbits. (English) Zbl 1373.37041

Summary: We announce a new result on determining the Conley index of the Poincaré map for a time-periodic non-autonomous ordinary differential equation. The index is computed using some singular cycles related to an index pair of a small-step discretization of the equation. We indicate how the result can be applied to computer-assisted proofs of the existence of bounded and periodic solutions. We provide also some comments on computer-assisted proving in dynamics.

MSC:

37B30 Index theory for dynamical systems, Morse-Conley indices
37C27 Periodic orbits of vector fields and flows
37M99 Approximation methods and numerical treatment of dynamical systems
65P99 Numerical problems in dynamical systems

Software:

RODES; kepler98

References:

[1] Appel K., Haken W., Every planar map is four colorable. Part I: Discharging, Illinois J. Math. 21 (1977), 429-490.; · Zbl 0387.05009
[2] Appel K., Haken W., Koch J., Every planar map is four colorable. Part II: Reducibility, Illinois J. Math. 21 (1977), 491-567.; · Zbl 0387.05010
[3] Bánhelyi B., Csendes T., Garay B.M., Hatvani L., A computer-assisted proof of ∑\(_3\)-chaos in the forced damped pendulum equation, SIAM J. Appl. Dyn. Syst. 7 (2008), 843-867.; · Zbl 1160.70010
[4] CAPA,;
[5] CAPD,;
[6] Capiński M.J.,Computer assisted existence proofs of Lyapunov orbits at L2 and transversal intersections of invariant manifolds in the Jupiter-Sun PCR3BP, SIAM J. Appl. Dyn. Syst. 11 (2012), 1723-1753.; · Zbl 1264.37008
[7] CHomP,; · Zbl 1049.91033
[8] Eckmann J.-P., Koch H., Wittwer P., A computer-assisted proof of universality for area-preserving maps, Mem. Amer. Math. Soc. 47 (1984), 1-121.; · Zbl 0528.58033
[9] Galias Z., Computer assisted proof of chaos in the Muthuswamy-Chua memristor circuit, Nonlinear Theory Appl. IEICE 5 (2014), 309-319.;
[10] Galias Z., Tucker W., Numerical study of coexisting attractors for the Hénon map, Int. J. Bifurcation Chaos 23 (2013), no. 7, 1330025, 18 pp.; · Zbl 1275.37023
[11] Gidea M., Zgliczyński P., Covering relations for multidimensional dynamical systems, J. Differential Equations 202 (2004), 33-58.; · Zbl 1061.37013
[12] Hales T.C., A proof of the Kepler conjecture, Ann. of Math. (2) 162 (2005), 1065-1185.; · Zbl 1096.52010
[13] Hales T.C. et al., A formal proof of the Kepler conjecture, preprint (2015),;
[14] Hass J., Schlafly R., Double bubbles minimize, Ann. of Math. (2) 151 (2000), 459-515.; · Zbl 0970.53008
[15] Hassard B., Zhang J., Existence of a homoclinic orbit of the Lorenz system by precise shooting, SIAM J. Math. Anal. 25 (1994), 179-196.; · Zbl 0799.34046
[16] Hastings S.P., Troy W.C., A shooting approach to the Lorenz equations, Bull. Amer. Math. Soc. 27 (1992), 128-131.; · Zbl 0764.58023
[17] Hickey T., Ju Q., van Emden M.H., Interval arithmetic: From principles to implementation, J. ACM 48 (2001), 1038-1068.; · Zbl 1323.65047
[18] Hutchings M., Morgan F., Ritoré M., Ros A., Proof of the double bubble conjecture, Ann. of Math. (2) 155 (2002), 459-489.; · Zbl 1009.53007
[19] Kapela T., Simó C., Computer assisted proofs for non-symmetric planar choreographies and for stability of the Eight, Nonlinearity 20 (2007), 1241-1255.; · Zbl 1115.70008
[20] Kapela T., Zgliczyński P., The existence of simple choreographies for the N-body problem - a computer assisted proof, Nonlinearity 16 (2003), 1899-1918.; · Zbl 1060.70023
[21] Lam C.W.H., The search for a finite projective plane of order 10, Amer. Math. Monthly 98 (1991), 305-318.; · Zbl 0744.51011
[22] Lam C.W.H., Thiel L., Swiercz S., The non-existence of finite projective planes of order 10, Canad. J. Math. 41 (1989), 1117-1123.; · Zbl 0691.51003
[23] Lanford O.E., III, A computer-assisted proof of the Feigenbaum conjecture, Bull. Amer. Math. Soc. (N.S.) 6 (1982), 427-434.; · Zbl 0487.58017
[24] Lanford O.E., III, Computer-assisted proofs in analysis, in: Proceedings of the International Congress of Mathematicians, Berkeley, California, USA, 1986, pp. 1385-1394.; · Zbl 0676.65039
[25] Lorenz E.N., Deterministic nonperiodic flow, J. Atmos. Sci. 20 (1963), 130-141.; · Zbl 1417.37129
[26] Mann A.L., A complete proof of the Robbins conjecture, preprint (2003).;
[27] McCune W., Solution of the Robbins problem, J. Autom. Reasoning 19 (1997), 263-276.; · Zbl 0883.06011
[28] Mischaikow K., Mrozek M., Chaos in the Lorenz equations: A computer assisted proof, Bull. Amer. Math. Soc. (N.S.) 32 (1995), 66-72.; · Zbl 0820.58042
[29] Mischaikow K., Mrozek M., Chaos in the Lorenz equations: A computer assisted proof. II: Details, Math. Comp. 67 (1998), 1023-1046.; · Zbl 0913.58038
[30] Mischaikow K., Mrozek M., Szymczak A., Chaos in the Lorenz equations: A computer assisted proof. III: Classical parameter values, J. Differential Equations 169 (2001), 17-56.; · Zbl 0979.37015
[31] Mischaikow K., Zgliczyński P., Rigorous numerics for partial differential equations: the Kuramoto-Sivashinsky equation, Found. Comput. Math. 1 (2001), 255-288.; · Zbl 0984.65101
[32] Mizar project,;
[33] Moeckel R., A computer-assisted proof of Saari’s conjecture for the planar three-body problem, Trans. Amer. Math. Soc. 357 (2005), 3105-3117.; · Zbl 1079.70011
[34] Mrozek M., Leray functor and cohomological Conley index for discrete dynamical systems, Trans. Amer. Math. Soc. 318 (1990),149-178.; · Zbl 0686.58034
[35] Mrozek M., From the theorem of Ważewski to computer assisted proofs in dynamics, Banach Center Publ. 34 (1995), 105-120.; · Zbl 0848.34032
[36] Mrozek M., Topological invariants, multivalued maps and computer assisted proofs in dynamics, Comput. Math. Appl. 32 (1996), 83-104.; · Zbl 0861.58027
[37] Mrozek M., Index pairs algorithms, Found. Comput. Math. 6 (2006), 457-493.; · Zbl 1111.37006
[38] Mrozek M., Srzednicki R., Topological approach to rigorous numerics of chaotic dynamical systems with strong expansion, Found. Comput. Math. 10 (2010), 191-220.; · Zbl 1192.65152
[39] Mrozek M., Srzednicki R., Weilandt F., A topological approach to the algorithmic computation of the Conley index for Poincaré maps, SIAM J. Appl. Dyn. Syst. 14 (2015), 1348-1386.; · Zbl 1325.65175
[40] Mrozek M., Żelawski M., Heteroclinic connections in the Kuramoto-Sivashinsky equations, Reliab. Comput. 3 (1997), 277-285.; · Zbl 0888.65091
[41] Robertson N., Sanders D., Seymour P., Thomas R., The four-colour theorem, J. Combin. Theory Ser. B 70 (1997), 2-44.; · Zbl 0883.05056
[42] Tucker W., The Lorenz attractor exists, C.R. Math. Acad. Sci. Paris 328 (1999), 1197-1202.; · Zbl 0935.34050
[43] Tucker W., A rigorous ODE solver and Smale’s 14th problem, Found. Comput. Math. 2 (2002), 53-117.; · Zbl 1047.37012
[44] Wikipedia, Pentium FDIV bug,;
[45] Wilczak D., Chaos in the Kuramoto-Sivashinsky equations - a computer assisted proof, J. Differential Equations 194 (2003), 433-459.; · Zbl 1050.37017
[46] Wilczak D., The existence of Shilnikov homoclinic orbits in the Michelson system: a computer assisted proof, Found. Comput. Math. 6 (2006), 495-535.; · Zbl 1130.37415
[47] Wilczak D., Zgliczyński P., Heteroclinic connections between periodic orbits in planar restricted circular three body problem - a computer assisted proof, Comm. Math. Phys. 234 (2003), 37-75.; · Zbl 1055.70005
[48] Wilczak D., Zgliczyński P., Period doubling in the Rössler system - a computer assisted proof, Found. Comput. Math. 9 (2009), 611-649.; · Zbl 1177.37083
[49] Wilczak D., Zgliczyński P., Computer assisted proof of the existence of homoclinic tangency for the Hénon map and for the forced-damped pendulum, SIAM J. Appl. Dyn. Syst. 8 (2009), 1632-1663.; · Zbl 1187.37115
[50] Zgliczyński P., Computer assisted proof of chaos in the Rössler equations and in the Hénon map, Nonlinearity 10 (1997), 243-252.; · Zbl 0907.58048
[51] Zgliczyński P., Rigorous numerics for dissipative partial differential equations II. Periodic orbit for the Kuramoto-Sivashinsky PDE - a computer assisted proof, Found. Comput. Math. 4 (2004), 157-185.; · Zbl 1066.65105
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.