×

Duality theorem for groups of multiplicative type over some function fields. (Dualité pour les groupes de type multiplicatif sur certains corps de fonctions.) (French. English summary) Zbl 1373.11034

Summary: Let \(K\) be the function field of a smooth projective curve \(X\) over a higher-dimensional local field \(k\). We define Tate-Shafarevich groups of a commutative group scheme via cohomology classes locally trivial at each completion of \(K\) coming from a closed point of \(X\). In this note, we state and sketch the proof of an arithmetic duality theorem for Tate-Shafarevich groups of groups of multiplicative type over \(K\) (and more generally of some two-term complexes of tori over \(K\)).

MSC:

11E72 Galois cohomology of linear algebraic groups
14G25 Global ground fields in algebraic geometry
14G17 Positive characteristic ground fields in algebraic geometry
11R32 Galois theory

References:

[1] Colliot-Thélène, J.-L.; Harari, D., Dualité et principe local-global pour les tores sur une courbe au-dessus de \(C((t))\), Proc. Lond. Math. Soc. (3), 110, 6, 1475-1516 (2015) · Zbl 1391.11070
[2] Harari, D.; Szamuely, T., Local-global principles for tori over \(p\)-adic function fields, J. Algebraic Geom., 25, 571-605 (2016) · Zbl 1355.14018
[3] Izquierdo, D., Principe local-global pour les corps de fonctions sur des corps locaux supérieurs II, Bull. Soc. Math. Fr., 145, 2 (2017), A paraître dans · Zbl 1416.11056
[4] Izquierdo, D., Variétés abéliennes sur les corps de fonctions de courbes sur des corps locaux (2015), Prépublication sur
[5] Izquierdo, D., Théorèmes de dualité pour les corps de fonctions sur des corps locaux supérieurs, Math. Z., 284, 1-2, 615-642 (2016) · Zbl 1407.11130
[6] Izquierdo, D., Dualité et principe local-global sur des corps locaux de dimension 2 (2016), Prépublication sur
[7] Izquierdo, D., Dualité et principe local-global sur les corps de fonctions (2016), thèse
[8] Milne, J. S., Arithmetic Duality Theorems (2006), BookSurge, LLC: BookSurge, LLC Charleston, SC, USA · Zbl 0613.14019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.