×

Robust periodic stability implies uniform exponential stability of Markovian jump linear systems and random linear ordinary differential equations. (English) Zbl 1372.93209

Summary: In this paper, we mainly show the following two statements.
(1) A discrete-time topological Markovian jump linear system is uniformly exponentially stable if and only if it is robustly periodically stable, by using a Gel’fand-Berger-Wang formula proved here.
(2) A random linear ODE driven by a semiflow with closing by periodic orbits property is uniformly exponentially stable if and only if it is robustly periodically stable, by using a perturbation technique of Shantao Liao and the semi-uniform ergodic theorems.
Our proofs involve the ergodic theory in both of the above two cases. In addition, counterexamples are constructed to the robustness condition and to the spectral finiteness of linear cocycle.

MSC:

93E15 Stochastic stability in control theory
93D20 Asymptotic stability in control theory
60J75 Jump processes (MSC2010)
93C05 Linear systems in control theory
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)

References:

[1] Aoki, N., The set of Axiom A diffeomorphisms with no cycles, Bol. Soc. Bras. Mat., 23, 21-65 (1992) · Zbl 0772.58043
[2] Arbieto, A., Periodic orbits and expansiveness, Math. Z., 269, 801-807 (2011) · Zbl 1263.37037
[3] Barabanov, N., Lyapunov indicators of discrete inclusions I-III, Autom. Remote Control, 49, 152-157 (1988), 283-287, 558-565 · Zbl 0665.93043
[4] Berger, M. A.; Wang, Y., Bounded semigroups of matrices, Linear Algebra Appl., 166, 21-27 (1992) · Zbl 0818.15006
[5] Bessa, M.; Rocha, J., Three-dimensional conservative star flows are Anosov, Discrete Contin. Dyn. Syst., 26, 839-846 (2010) · Zbl 1183.37048
[6] Blondel, V. D.; Theys, J.; Tsitsiklis, J. N., When is a pair of matrices stable?, (Blondel, V. D.; Megretski, A., Unsolved Problems in Mathematical Systems and Control Theory (2004), Princeton University Press: Princeton University Press Princeton, NJ)
[7] Blondel, V. D.; Theys, J.; Vladimirov, A. A., An elementary counterexample to the finiteness conjecture, SIAM J. Matrix Anal. Appl., 24, 963-970 (2003) · Zbl 1043.15007
[8] Bousch, T.; Mairesse, J., Asymptotic height optimization for topical IFS, Tetris heaps and the finiteness conjecture, J. Amer. Math. Soc., 15, 77-111 (2002) · Zbl 1057.49007
[9] Cao, Y.-L., On growth rates of sub-additive functions for semi-flowsdetermined and random cases, J. Differ. Equ., 231, 1-17 (2006) · Zbl 1114.37029
[10] Dai, X., Integral expressions of Lyapunov exponents for autonomous ordinary differential systems, Sci. China Ser. A: Math., 52, 195-216 (2009) · Zbl 1192.34062
[11] Dai, X., A note on the shadowing lemma of Liaoa generalized and improved version, Tohoku Math. J., 62, 509-526 (2010) · Zbl 1225.37030
[12] Dai, X., Extremal and Barabanov semi-norms of a semigroup generated by a bounded family of matrices, J. Math. Anal. Appl., 379, 827-833 (2011) · Zbl 1215.15025
[13] Dai, X., Optimal state points of the subadditive ergodic theorem, Nonlinearity, 24, 1565-1573 (2011) · Zbl 1254.37007
[14] Dai, X., Hyperbolicity of \(C^1\)-star invariant sets for \(C^1\)-class dynamical systems, Sci. China Math., 54, 269-280 (2011) · Zbl 1218.37029
[15] Dai, X., Exponential closing property and approximation of Lyapunov exponents of linear cocycles, Forum Math., 23, 321-347 (2011) · Zbl 1237.37056
[16] Dai, X., A Gel׳fand-type spectral-radius formula and stability of linear constrained switching systems, Linear Algebra Appl., 436, 1099-1113 (2012) · Zbl 1237.15010
[17] Dai, X., Dominated splitting of differentiable dynamics with \(C^1\)-topological weak-star property, J. Math. Soc. Japan, 64, 1249-1295 (2012) · Zbl 1281.37009
[18] Dai, X., Some criteria for spectral finiteness of a finite subset of the real matrix space \(R^{d \times d}\), Linear Algebra Appl., 438, 2717-2727 (2013) · Zbl 1270.15006
[20] Daubechies, I.; Lagarias, J. C., Sets of matrices all infinite products of which converge, Linear Algebra Appl., 161, 227-263 (1992), Corrigendum/addendum 327 (2001) 69-83 · Zbl 0746.15015
[21] Elsner, L., The generalized spectral-radius theoreman analytic-geometric proof, Linear Algebra Appl., 220, 151-159 (1995) · Zbl 0828.15006
[22] Franks, J., Necessary conditions for stability of diffeomorphisms, Trans. Am. Math. Soc., 158, 301-308 (1971) · Zbl 0219.58005
[23] Froyland, G.; Lloyd, S.; Quas, A., Coherent structures and isolated spectrum for Perron-Frobenius cocyles, Ergod. Theory Dyn. Syst., 30, 729-756 (2010) · Zbl 1205.37015
[24] Gan, S.; Wen, L., Nonsingular star flows satisfy Axiom A and the no-cycle condition, Invent. Math., 164, 279-315 (2006) · Zbl 1101.37023
[25] Gurvits, L., Stability of discrete linear inclusions, Linear Algebra Appl., 231, 47-85 (1995) · Zbl 0845.68067
[26] Hare, K. G.; Morris, I. D.; Sidorov, N.; Theys, J., An explicit counterexample to the Lagarias-Wang finiteness conjecture, Adv. Math., 226, 4667-4701 (2011) · Zbl 1218.15005
[27] Hayashi, S., Diffeomorphisms in \(F^1(M)\) satisfy Axiom A, Ergod. Theory Dyn. Syst., 12, 233-253 (1992) · Zbl 0760.58035
[29] Kalinin, B., Livšic theorem for matrix cocycles, Ann. Math., 173, 2, 1025-1042 (2011) · Zbl 1238.37008
[30] Katok, A., Lyapunov exponent, entropy and periodic orbits for diffeomorphisms, Publ. Math. Inst. Ht. Études Sci., 51, 137-173 (1980) · Zbl 0445.58015
[31] Kozyakin, V. S., Structure of extremal trajectories of discrete linear systems and the finiteness conjecture, Autom. Remote Control, 68, 174-209 (2007) · Zbl 1195.93082
[32] Kozyakin, V. S., An explicit Lipschitz constant for the joint spectral radius, Linear Algebra Appl., 433, 12-18 (2010) · Zbl 1198.15006
[33] Lagarias, J. C.; Wang, Y., The finiteness conjecture for the generalized spectral radius of a set of matrices, Linear Algebra Appl., 214, 17-42 (1995) · Zbl 0818.15007
[34] Liao, S.-T., An existence theorem for periodic orbits, Acta Sci. Natur. Univ. Pekin., 1-20 (1979)
[35] Liao, S.-T., A basic property of a certain class of differential systems, Acta Math. Sin., 22, 316-343 (1979) · Zbl 0421.58012
[36] Liao, S.-T., On the stability conjecture, Chin. Ann. Math., 1, 9-30 (1980) · Zbl 0449.58013
[38] Liberzon, D.; Morse, A. S., Basic problems in stability and design of switched systems, IEEE Control Syst. Mag., 19, 59-70 (1999) · Zbl 1384.93064
[39] Lin, H.; Antsaklis, P. J., Stability and stabilizability of switched linear systemsa survey of recent results, IEEE Trans. Autom. Control, 54, 308-322 (2009) · Zbl 1367.93440
[40] Mañé, R., An ergodic closing lemma, Ann. Math., 116, 2, 503-540 (1982) · Zbl 0511.58029
[41] Margaliot, M., Stability analysis of switched systems using variational principlesan introduction, Automatica, 42, 2059-2077 (2006) · Zbl 1104.93018
[42] Michel, A. N., Recent trends in the stability analysis of hybrid dynamical systems, IEEE Trans. Circuits Syst. I, 46, 120-134 (1999) · Zbl 0981.93055
[43] Morris, I. D., The generalized Berger-Wang formula and the spectral radius of linear cocycles, J. Funct. Anal., 262, 811-824 (2012) · Zbl 1254.47006
[44] Nemytskii, V. V.; Stepanov, V. V., Qualitative Theory of Differential Equations (1960), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 0089.29502
[45] Oseledec, V. I., A multiplicative ergodic theorem, Lyapunov characteristic numbers for dynamical systems, Trudy Mosk Mat. Obsec., 19, 119-210 (1968)
[46] \(Pyatnitskii^˘\), E. S.; Rapoport, L. B., Periodic motion and tests for absolute stability on nonlinear nonstationary systems, Autom. Remote Control, 52, 1379-1387 (1991) · Zbl 0795.93085
[47] Schreiber, S. J., On growth rates of subadditive functions for semi-flows, J. Differ. Equ., 148, 334-350 (1998) · Zbl 0940.37007
[48] Shih, M.-H.; Wu, J.-W.; Pang, C.-T., Asymptotic stability and generalized Gelfand spectral radius formula, Linear Algebra Appl., 252, 61-70 (1997) · Zbl 0873.15012
[49] Shorten, R.; Wirth, F.; Mason, O.; Wulff, K.; King, C., Stability criteria for switched and hybrid systems, SIAM Rev., 49, 545-592 (2007) · Zbl 1127.93005
[50] Smale, S., Differentiable dynamical systems, Bull. Am. Math. Soc., 73, 747-817 (1967) · Zbl 0202.55202
[51] Sturman, R.; Stark, J., Semi-uniform ergodic theorems and applications to forced systems, Nonlinearity, 13, 113-143 (2000) · Zbl 1005.37016
[52] Sun, Z.; Ge, S. S., Stability Theory of Switched Dynamical Systems (2011), Springer-Verlag: Springer-Verlag Berlin, Heidelberg, New York · Zbl 1298.93006
[53] Tsitsiklis, J. N.; Blondel, V. D., The Lyapunov exponent and joint spectral radius of pairs of matrices are hard - when not impossible - to compute and to approximate, Math. Control Signals Syst., 10, 31-40 (1997) · Zbl 0888.65044
[54] Wirth, F., The generalized spectral radius and extremal norms, Linear Algebra Appl., 342, 17-40 (2002) · Zbl 0996.15020
[55] Wirth, F., A converse Lyapunov theorem for linear parameter-varying and linear switching systems, SIAM J. Control Optim., 44, 210-239 (2005) · Zbl 1098.34040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.