×

A mathematical framework for kinetochore-driven activation feedback in the mitotic checkpoint. (English) Zbl 1372.92023

Summary: Proliferating cells properly divide into their daughter cells through a process that is mediated by kinetochores, protein-complexes that assemble at the centromere of each sister chromatid. Each kinetochore has to establish a tight bipolar attachment to the spindle apparatus before sister chromatid separation is initiated. The spindle assembly checkpoint (SAC) links the biophysical attachment status of the kinetochores to mitotic progression and ensures that even a single misaligned kinetochore keeps the checkpoint active. The mechanism by which this is achieved is still elusive. Current computational models of the human SAC disregard important biochemical properties by omitting any kind of feedback loop, proper kinetochore signals, and other spatial properties such as the stability of the system and diffusion effects. To allow for more realistic in silico study of the dynamics of the SAC model, a minimal mathematical framework for SAC activation and silencing is introduced. A nonlinear ordinary differential equation model successfully reproduces bifurcation signaling switches with attachment of all 92 kinetochores and activation of APC/C by kinetochore-driven feedback. A partial differential equation model and mathematical linear stability analyses indicate the influence of diffusion and system stability. The conclusion is that quantitative models of the human SAC should account for the positive feedback on APC/C activation driven by the kinetochores which is essential for SAC silencing. Experimental diffusion coefficients for MCC subcomplexes are found to be insufficient for rapid APC/C inhibition. The presented analysis allows for systems-level understanding of mitotic control, and the minimal new model can function as a basis for developing further quantitative-integrative models of the cell division cycle.

MSC:

92C37 Cell biology
92C40 Biochemistry, molecular biology

Software:

XPPAUT; AUTO

References:

[1] Bakhoum SF, Genovese G, Compton DA (2009) Deviant kinetochore microtubule dynamics underlie chromosomal instability. Curr Biol 19(22):1937-1942 · doi:10.1016/j.cub.2009.09.055
[2] Chan GK, Jablonski SA, Sudakin V, Hittle JC, Yen TJ (1999) Human BUBR1 is a mitotic checkpoint kinase that monitors CENP-E functions at kinetochores and binds the cyclosome/APC. J Cell Biol 146(5):941-954 · doi:10.1083/jcb.146.5.941
[3] Chen J, Liu J (2014) Spatial-temporal model for silencing of the mitotic spindle assembly checkpoint. Nat Commun 5:4795 · doi:10.1038/ncomms5795
[4] Cherry LM, Faulkner AJ, Grossberg LA, Balczon R (1989) Kinetochore size variation in mammalian chromosomes: an image analysis study with evolutionary implications. J Cell Sci 92(Pt 2):281-289
[5] da Silva SM, Moutinho-Santos T, Sunkel CE (2013) A tumor suppressor role of the Bub3 spindle checkpoint protein after apoptosis inhibition. J Cell Biol 201(3):385-393 · doi:10.1083/jcb.201210018
[6] De Antoni A, Pearson CG, Cimini D, Canman JC, Sala V, Nezi L, Mapelli M, Sironi L, Faretta M, Salmon ED, Musacchio A (2005) The Mad1/Mad2 complex as a template for Mad2 activation in the spindle assembly checkpoint. Curr Biol 15(3):214-225 · doi:10.1016/j.cub.2005.01.038
[7] Denisenko TV, Sorokina IV, Gogvadze V, Zhivotovsky B (2016) Mitotic catastrophe and cancer drug resistance: a link that must to be broken. Drug Resist Updates 24:1-12 · doi:10.1016/j.drup.2015.11.002
[8] Doedel EJ (1981) Auto: a program for the automatic bifurcation analysis of autonomous systems. Congr Numer 30:265-284 · Zbl 0511.65064
[9] Doncic A, Ben-Jacob E, Barkai N (2005) Evaluating putative mechanisms of the mitotic spindle checkpoint. Proc Natl Acad Sci USA 102(18):6332-6337 · doi:10.1073/pnas.0409142102
[10] Ermentrout B (2002) Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students, vol 14. SIAM, Philadelphia · Zbl 1003.68738 · doi:10.1137/1.9780898718195
[11] Eytan E, Braunstein I, Ganoth D, Teichner A, Hittle JC, Yen TJ, Hershko A (2008) Two different mitotic checkpoint inhibitors of the anaphase-promoting complex/cyclosome antagonize the action of the activator Cdc20. Proc Natl Acad Sci USA 105(27):9181-9185 · doi:10.1073/pnas.0804069105
[12] Fang G (2002) Checkpoint protein BubR1 acts synergistically with Mad2 to inhibit anaphase-promoting complex. Mol Biol Cell 13(3):755-766 · doi:10.1091/mbc.01-09-0437
[13] Fang G, Yu H, Kirschner MW (1998) The checkpoint protein MAD2 and the mitotic regulator CDC20 form a ternary complex with the anaphase-promoting complex to control anaphase initiation. Genes Dev 12(12):1871-1883 · doi:10.1101/gad.12.12.1871
[14] Görlich D, Escuela G, Gruenert G, Dittrich P, Ibrahim B (2014) Molecular codes in the human inner-kinetochore model: relating cenps to function. Biosemiotics 7(2):223-247 · doi:10.1007/s12304-013-9193-5
[15] Gruenert G, Ibrahim B, Lenser T, Lohel M, Hinze T, Dittrich P (2010) Rule-based spatial modeling with diffusing, geometrically constrained molecules. BMC Bioinform 11:307 · doi:10.1186/1471-2105-11-307
[16] Gruenert G, Szymanski J, Holley J, Escuela G, Diem A, Ibrahim B, Adamatzky A, Gorecki J, Dittrich P (2013) Multi-scale modelling of computers made from excitable chemical droplets. Int J Unconv Comput 9(3-4):237-266
[17] Gruenert G, Gizynski K, Escuela G, Ibrahim B, Gorecki J, Dittrich P (2015) Understanding networks of computing chemical droplet neurons based on information flow. Int J Neural Syst 25(07):1450032 · doi:10.1142/S0129065714500324
[18] Han JS, Holland AJ, Fachinetti D, Kulukian A, Cetin B, Cleveland DW (2013) Catalytic assembly of the mitotic checkpoint inhibitor BubR1-Cdc20 by a Mad2-induced functional switch in Cdc20. Mol Cell 51(1):92-104 · doi:10.1016/j.molcel.2013.05.019
[19] Holland AJ, Cleveland DW (2009) Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis. Nat Rev Mol Cell Biol 10(7):478-87 · doi:10.1038/nrm2718
[20] Howell BJ, Hoffman DB, Fang G, Murray AW, Salmon ED (2000) Visualization of Mad2 dynamics at kinetochores, along spindle fibers, and at spindle poles in living cells. J Cell Biol 150(6):1233-1250 · doi:10.1083/jcb.150.6.1233
[21] Ibrahim B (2015a) In silico spatial simulations reveal that MCC formation and excess BubR1 are required for tight inhibition of the anaphase-promoting complex. Mol Biosyst. doi:10.1039/C5MB00395D · doi:10.1039/C5MB00395D
[22] Ibrahim B (2015b) Spindle assembly checkpoint is sufficient for complete cdc20 sequestering in mitotic control. Comput Struct Biotechnol J 13:320-328 · doi:10.1016/j.csbj.2015.03.006
[23] Ibrahim B (2015c) Systems biology modeling of five pathways for regulation and potent inhibition of the anaphase-promoting complex (APC/C): pivotal roles for MCC and BubR1. OMICS 19(5):294-305 · doi:10.1089/omi.2015.0027
[24] Ibrahim B (2015d) Toward a systems-level view of mitotic checkpoints. Prog Biophys Mol Biol 117(2-3):217-224 · doi:10.1016/j.pbiomolbio.2015.02.005
[25] Ibrahim B, Henze R (2014) Active transport can greatly enhance Cdc20:Mad2 formation. Int J Mol Sci 15(10):19074-19091 · doi:10.3390/ijms151019074
[26] Ibrahim B, Dittrich P, Diekmann S, Schmitt E (2007) Stochastic effects in a compartmental model for mitotic checkpoint regulation. J Integr Bioinform 4(3):66
[27] Ibrahim B, Diekmann S, Schmitt E, Dittrich P (2008a) In-silico modeling of the mitotic spindle assembly checkpoint. PLoS ONE 3(2):e1555 · doi:10.1371/journal.pone.0001555
[28] Ibrahim B, Dittrich P, Diekmann S, Schmitt E (2008b) Mad2 binding is not sufficient for complete Cdc20 sequestering in mitotic transition control (an in silico study). Biophys Chem 134(1-2):93-100 · doi:10.1016/j.bpc.2008.01.007
[29] Ibrahim B, Schmitt E, Dittrich P, Diekmann S (2009) In silico study of kinetochore control, amplification, and inhibition effects in mcc assembly. Biosystems 95(1):35-50 · doi:10.1016/j.biosystems.2008.06.007
[30] Ibrahim B, Henze R, Gruenert G, Egbert MM, Huwald J, Dittrich P (2013) Rule-based modeling in space for linking heterogeneous interaction data to large-scale dynamical molecular complexes. Cells 2:506-544 · doi:10.3390/cells2030506
[31] Irniger S (2002) Cyclin destruction in mitosis: a crucial task of Cdc20. FEBS Lett 532(1-2):7-11 · doi:10.1016/S0014-5793(02)03657-8
[32] Izawa D, Pines J (2015) The mitotic checkpoint complex binds a second CDC20 to inhibit active APC/C. Nature 517(7536):631-634 · doi:10.1038/nature13911
[33] Kabeche L, Compton DA (2012) Checkpoint-independent stabilization of kinetochore-microtubule attachments by Mad2 in human cells. Curr Biol 22(7):638-644 · doi:10.1016/j.cub.2012.02.030
[34] Kamenz J, Mihaljev T, Kubis A, Legewie S, Hauf S (2015) Robust ordering of anaphase events by adaptive thresholds and competing degradation pathways. Mol Cell 60(3):446-459 · doi:10.1016/j.molcel.2015.09.022
[35] Kastl J, Braun J, Prestel A, Moller HM, Huhn T, Mayer TU (2015) Mad2 inhibitor-1 (M2I-1): a small molecule protein-protein interaction inhibitor targeting the mitotic spindle assembly checkpoint. ACS Chem Biol 10(7):1661-1666 · doi:10.1021/acschembio.5b00121
[36] Kraft C, Herzog F, Gieffers C, Mechtler K, Hagting A, Pines J, Peters JM (2003) Mitotic regulation of the human anaphase-promoting complex by phosphorylation. EMBO J 22(24):6598-6609 · doi:10.1093/emboj/cdg627
[37] Kreyssig P, Escuela G, Reynaert B, Veloz T, Ibrahim B, Dittrich P (2012) Cycles and the qualitative evolution of chemical systems. PLoS ONE 7(10):e45772 · doi:10.1371/journal.pone.0045772
[38] Kreyssig P, Wozar C, Peter S, Veloz T, Ibrahim B, Dittrich P (2014) Effects of small particle numbers on long-term behaviour in discrete biochemical systems. Bioinformatics 30(17):i475-481 · doi:10.1093/bioinformatics/btu453
[39] Lindqvist A, van Zon W, Karlsson Rosenthal C, Wolthuis RM (2007) Cyclin B1-Cdk1 activation continues after centrosome separation to control mitotic progression. PLoS Biol 5(5):e123 · doi:10.1371/journal.pbio.0050123
[40] Logan J (1997) Applied mathematics. Wiley, New York · Zbl 0947.00003
[41] Lohel M, Ibrahim B, Diekmann S, Dittrich P (2009) The role of localization in the operation of the mitotic spindle assembly checkpoint. Cell Cycle 8(16):2650-2660 · doi:10.4161/cc.8.16.9383
[42] Lu D, Girard JR, Li W, Mizrak A, Morgan DO (2015) Quantitative framework for ordered degradation of APC/C substrates. BMC Biol 13:96 · doi:10.1186/s12915-015-0205-6
[43] Luo X, Tang Z, Xia G, Wassmann K, Matsumoto T, Rizo J, Yu H (2004) The Mad2 spindle checkpoint protein has two distinct natively folded states. Nat Struct Mol Biol 11(4):338-345 · doi:10.1038/nsmb748
[44] Mapelli M, Filipp FV, Rancati G, Massimiliano L, Nezi L, Stier G, Hagan RS, Confalonieri S, Piatti S, Sattler M, Musacchio A (2006) Determinants of conformational dimerization of Mad2 and its inhibition by p31comet. EMBO J 25(6):1273-1284 · doi:10.1038/sj.emboj.7601033
[45] Michel LS, Liberal V, Chatterjee A, Kirchwegger R, Pasche B, Gerald W, Dobles M, Sorger PK, Murty VV, Benezra R (2001) MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature 409(6818):355-359 · doi:10.1038/35053094
[46] Mistry HB, MacCallum DE, Jackson RC, Chaplain MA, Davidson FA (2008) Modeling the temporal evolution of the spindle assembly checkpoint and role of Aurora B kinase. Proc Natl Acad Sci USA 105(51):20215-20220 · doi:10.1073/pnas.0810706106
[47] Mondal G, Baral RN, Roychoudhury S (2006) A new Mad2-interacting domain of Cdc20 is critical for the function of Mad2-Cdc20 complex in the spindle assembly checkpoint. Biochem J 396(2):243-253 · doi:10.1042/BJ20051914
[48] Mondal G, Sengupta S, Panda CK, Gollin SM, Saunders WS, Roychoudhury S (2007) Overexpression of Cdc20 leads to impairment of the spindle assembly checkpoint and aneuploidization in oral cancer. Carcinogenesis 28(1):81-92 · doi:10.1093/carcin/bgl100
[49] Moore JD, Kirk JA, Hunt T (2003) Unmasking the S-phase-promoting potential of cyclin B1. Science 300(5621):987-990 · doi:10.1126/science.1081418
[50] Musacchio A, Salmon ED (2007) The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol 8:379-393 · doi:10.1038/nrm2163
[51] Rieder CL, Schultz A, Cole R, Sluder G (1994) Anaphase onset in vertebrate somatic cells is controlled by a checkpoint that monitors sister kinetochore attachment to the spindle. J Cell Biol 127(5):1301-1310 · doi:10.1083/jcb.127.5.1301
[52] Rieder CL, Cole RW, Khodjakov A, Sluder G (1995) The checkpoint delaying anaphase in response to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochores. J Cell Biol 130(4):941-948 · doi:10.1083/jcb.130.4.941
[53] Rudner AD, Murray AW (1996) The spindle assembly checkpoint. Curr Opin Cell Biol 8(6):773-780 · doi:10.1016/S0955-0674(96)80077-9
[54] Sear RP, Howard M (2006) Modeling dual pathways for the metazoan spindle assembly checkpoint. Proc Natl Acad Sci USA 103(45):16758-16763 · doi:10.1073/pnas.0603174103
[55] Silva PM, Reis RM, Bolanos-Garcia VM, Florindo C, Tavares AA, Bousbaa H (2014) Dynein-dependent transport of spindle assembly checkpoint proteins off kinetochores toward spindle poles. FEBS Lett 588(17):3265-3273 · doi:10.1016/j.febslet.2014.07.011
[56] Skeel RD, Berzins M (1990) A method for the spatial discretization of parabolic equations in one space variable. SIAM J Sci Stat Comput 11(1):1-32 · Zbl 0701.65065 · doi:10.1137/0911001
[57] Stegmeier F, Rape M, Draviam VM, Nalepa G, Sowa ME, Ang XL, McDonald ER, Li MZ, Hannon GJ, Sorger PK, Kirschner MW, Harper JW, Elledge SJ (2007) Anaphase initiation is regulated by antagonistic ubiquitination and deubiquitination activities. Nature 446(7138):876-881 · doi:10.1038/nature05694
[58] Stemmann O, Zou H, Gerber SA, Gygi SP, Kirschner MW (2001) Dual inhibition of sister chromatid separation at metaphase. Cell 107(6):715-726 · doi:10.1016/S0092-8674(01)00603-1
[59] Sun Y, Kucej M, Fan HY, Yu H, Sun QY, Zou H (2009) Separase is recruited to mitotic chromosomes to dissolve sister chromatid cohesion in a DNA-dependent manner. Cell 137(1):123-132 · doi:10.1016/j.cell.2009.01.040
[60] Tang Z, Bharadwaj R, Li B, Yu H (2001) Mad2-independent inhibition of APCCdc20 by the mitotic checkpoint protein BubR1. Dev Cell 1(2):227-237 · doi:10.1016/S1534-5807(01)00019-3
[61] Tschernyschkow S, Herda S, Gruenert G, Doring V, Gorlich D, Hofmeister A, Hoischen C, Dittrich P, Diekmann S, Ibrahim B (2013) Rule-based modeling and simulations of the inner kinetochore structure. Prog Biophys Mol Biol 113(1):33-45 · doi:10.1016/j.pbiomolbio.2013.03.010
[62] Tugendreich S, Tomkiel J, Earnshaw W, Hieter P (1995) CDC27Hs colocalizes with CDC16Hs to the centrosome and mitotic spindle and is essential for the metaphase to anaphase transition. Cell 81(2):261-268 · doi:10.1016/0092-8674(95)90336-4
[63] Uzunova K, Dye BT, Schutz H, Ladurner R, Petzold G, Toyoda Y, Jarvis MA, Brown NG, Poser I, Novatchkova M, Mechtler K, Hyman AA, Stark H, Schulman BA, Peters JM (2012) APC15 mediates CDC20 autoubiquitylation by APC/C(MCC) and disassembly of the mitotic checkpoint complex. Nat Struct Mol Biol 19(11):1116-1123 · doi:10.1038/nsmb.2412
[64] Varetti G, Guida C, Santaguida S, Chiroli E, Musacchio A (2011) Homeostatic control of mitotic arrest. Mol Cell 44(5):710-720 · doi:10.1016/j.molcel.2011.11.014
[65] Wang Z, Shah JV, Berns MW, Cleveland DW (2006) In vivo quantitative studies of dynamic intracellular processes using fluorescence correlation spectroscopy. Biophys J 91(1):343-351 · doi:10.1529/biophysj.105.077891
[66] Yamamoto Y, Matsuyama H, Chochi Y, Okuda M, Kawauchi S, Inoue R, Furuya T, Oga A, Naito K, Sasaki K (2007) Overexpression of BUBR1 is associated with chromosomal instability in bladder cancer. Cancer Genet Cytogenet 174(1):42-47 · doi:10.1016/j.cancergencyto.2006.11.012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.