×

An efficient parallel mixed method for flow simulations in heterogeneous geological media. (English) Zbl 1372.86009

Summary: The permeability of a 3D geological fracture network is determined by triangulating the fractures and solving the 2D Darcy’s equation in each fracture. Here, the numerical modelling aims to simulate a great number of networks made up of a great number of fractures i.e. from \(10^{3}\) to \(10^{6}\) fractures. Parallel computing allows us to solve very large linear systems improving the realism of simulations. Several algorithms to simulating fluid flow are proposed for the cases of significant matrix permeability. In the case of a weak permeability matrix, the flow is focused in the fractures having a strong permeability and fluids percolate through networks of interconnected fractures. In this paper, we present a complete parallel algorithm for solving flow equations in fracture networks. We consider an imprevious matrix. The different parts of the algorithm are detailed. Numerical examples using the mixed finite element (MFE) method for various fracture networks illustrate the efficiency and robustness of the proposed algorithm. To the best of our knowledge, results for parellel simulation of fluid flow in discrete-fractured media with impervious matrix using the MFE method are the first to appear in the literature.

MSC:

86A60 Geological problems
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
76S05 Flows in porous media; filtration; seepage

Software:

METIS
Full Text: DOI

References:

[1] Adler P. M., Fractures and Fracture Networks (1999)
[2] DOI: 10.1002/(SICI)1098-2418(200005)16:3<240::AID-RSA2>3.0.CO;2-V · Zbl 0953.68146 · doi:10.1002/(SICI)1098-2418(200005)16:3<240::AID-RSA2>3.0.CO;2-V
[3] DOI: 10.1137/0521046 · Zbl 0698.76106 · doi:10.1137/0521046
[4] Bastian, P., Zhangxin, C., Richard, E., Rainer, H., Hartmut, J. and Reichenberger, V. 2000.Numerical Simulation of Multiphase Flow in Fractured Porous Media, Lecture Notes in PhysicsVol. 552, 50 · Zbl 1072.76575
[5] DOI: 10.1016/0148-9062(89)91977-3 · doi:10.1016/0148-9062(89)91977-3
[6] DOI: 10.1029/1999RG000074 · doi:10.1029/1999RG000074
[7] DOI: 10.1029/98WR01861 · doi:10.1029/98WR01861
[8] DOI: 10.1016/0045-7825(84)90055-0 · Zbl 0545.76125 · doi:10.1016/0045-7825(84)90055-0
[9] Brezzi F., Mixed and Hybrid Finite Element Method (1991) · Zbl 0788.73002
[10] Cacas M. C., Water Resour. Res. 26 pp 479– (1990)
[11] Chavent G., Adv. Water Resour. 14 pp 3– (1991)
[12] DOI: 10.2118/10501-PA · doi:10.2118/10501-PA
[13] DOI: 10.1103/PhysRevE.62.5948 · doi:10.1103/PhysRevE.62.5948
[14] DOI: 10.1007/b138453 · doi:10.1007/b138453
[15] DOI: 10.1029/94WR00061 · doi:10.1029/94WR00061
[16] Firoozabadi A., SPE Adv. Technol. Ser. 2 pp 45– (1994)
[17] Gupta A., Parallel Numerical Computations with Applications pp 515– (1999)
[18] DOI: 10.1145/275168.275174 · doi:10.1145/275168.275174
[19] DOI: 10.1023/A:1019988901420 · Zbl 1079.76581 · doi:10.1023/A:1019988901420
[20] Karypis G., METIS: A software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices, version 4.0 (1998)
[21] Kazemi H., SPEJ 9 pp 451– (1969)
[22] Kazemi H., SPEJ 6 pp 219– (1992)
[23] Koudina N., Phys. Rev. 57 pp 4466– (1998)
[24] DOI: 10.1007/s10596-005-0152-3 · Zbl 1116.76427 · doi:10.1007/s10596-005-0152-3
[25] DOI: 10.1029/94WR01786 · doi:10.1029/94WR01786
[26] Mustapha H., Simulation numérique de lécoulement dans des milieux fracturés tridimensionnels (2005)
[27] Mustapha, H. An Adaptive method for Flow Simulation in Three-Dimensional Heterogeneous Discrete Fracture Networks”. International conference on Scientific Computing. Nevada, USA.
[28] Mustapha, H. 2006 World Congress in Computer Science, Computer Engineering, and Applied Computing. Las Vegas. Monte Carlo simulation of flow in three-dimensional discrete fracture networks, USA
[29] Mustapha H., AM2FM: Automatical generator mesh for complex 2D discrete fractured media (2007)
[30] Mustapha H., Parallel computing: Current and future issues of high-end computing, NIC 33 pp 391– (2005)
[31] Mustapha, H., Erhel, J. and de Dreuzy, J. R. International conference on Parallel and Distributed Processing Techniques and Applications. NE, USA. Heterogeneous fractured media: Mathematical analysis and parallel computing,
[32] Mustapha H., SPEJ
[33] DOI: 10.1137/060653482 · Zbl 1251.76056 · doi:10.1137/060653482
[34] Neretnieks I., Proceedings of Hydrogeology of Rock of Low Permeability, Mem. Intern. Assoc. Hydrogeol. 17 pp 301– (1985)
[35] Philip Z. G., SPE Reservoir Evaluation Eng. 8 pp 300– (2005) · doi:10.2118/77340-PA
[36] Raviart, P. A. and Thomas, J. M. 1996.A Mixed Hybrid Finite Element Method for the Second Order Elliptic Problem, Lectures Notes in MathematicsVol. 606, 292–315.
[37] Saad Y., Iterative Methods for Sparse Linear Systems · Zbl 1002.65042 · doi:10.1137/1.9780898718003
[38] Thomas J., Sur l’analyse numérique des méthodes d’elément Finis hybrides et mixtes (1977)
[39] Vohralik M., Méthodes numériques pour des équations elliptiques et paraboliques non linéaires: Application á des problémes d’écoulement en milieux poreux et fracturés (2004)
[40] DOI: 10.1016/S0309-1708(02)00006-4 · doi:10.1016/S0309-1708(02)00006-4
[41] Yu-Shu W., LBNL-49407, Computational Methods in Water Resources Vol. 1, Developments in Water Science 47 pp 289– (2002)
[42] DOI: 10.1016/S0169-7722(02)00159-6 · doi:10.1016/S0169-7722(02)00159-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.