×

Exact description of coalescing eigenstates in open quantum systems in terms of microscopic Hamiltonian dynamics. (English) Zbl 1372.81102

Summary: At the exceptional point where two eigenstates coalesce in open quantum systems, the usual diagonalization scheme breaks down and the Hamiltonian can only be reduced to the Jordan block form. Most of the studies on the exceptional point appearing in the literature introduce a phenomenological effective Hamiltonian that essentially reduces the problem to that of a finite non-Hermitian matrix for which it is straightforward to obtain the Jordan form. In this paper, we demonstrate how the microscopic total Hamiltonian of an open quantum system reduces to the Jordan block form at an exceptional point in an exact manner that treats the continuum without any approximation by extending the problem to include eigenstates with complex eigenvalues that reside outside the Hilbert space. Our method relies on the Brillouin-Wigner-Feshbach projection method according to which we can obtain a finite-dimensional effective Hamiltonian that shares the discrete sector of the spectrum with the total Hamiltonian. Because of the eigenvalue dependence of the effective Hamiltonian due to the dynamical nature of the coupling between the discrete states via the continuum states, a coalescence of eigenvalues results in the coalescence of the corresponding eigenvectors of the total Hamiltonian, which means that the system is at an exceptional point. We also introduce an extended Jordan form basis away from the exceptional point, which provides an alternative way to obtain the Jordan block at an exceptional point. The extended Jordan block connects continuously to the Jordan block exactly at the exceptional point implying that the observable quantities are continuous at the exceptional point.{
©2017 American Institute of Physics}

MSC:

81S22 Open systems, reduced dynamics, master equations, decoherence
81Q12 Nonselfadjoint operator theory in quantum theory including creation and destruction operators
47B15 Hermitian and normal operators (spectral measures, functional calculus, etc.)

References:

[1] Kadanoff, L. P.; Swift, J., Phys. Rev., 165, 310 (1968) · doi:10.1103/physrev.165.310
[2] Hatano, N.; Nelson, D. R., Phys. Rev. Lett., 77, 570 (1996) · doi:10.1103/physrevlett.77.570
[3] Hatano, N.; Nelson, D. R., Phys. Rev. B, 56, 8651 (1997) · doi:10.1103/physrevb.56.8651
[4] Hatano, N.; Nelson, D. R., Phys. Rev. B, 58, 8384 (1998) · doi:10.1103/physrevb.58.8384
[5] Chalker, J. T.; Wang, Z. J., Phys. Rev. Lett., 79, 1797 (1997) · doi:10.1103/physrevlett.79.1797
[6] Narevicius, E.; Serra, P.; Moiseyev, N., Europhys. Lett., 62, 789 (2003) · doi:10.1209/epl/i2003-00441-9
[7] Moiseyev, N., Non-Hermitian Quantum Mechanics (2011) · Zbl 1230.81004
[8] Serra, P.; Kais, S.; Moiseyev, N., Phys. Rev. A, 64, 062502 (2001) · doi:10.1103/physreva.64.062502
[9] Klaiman, S.; Günther, U.; Moiseyev, N., Phys. Rev. Lett., 101, 080402 (2008) · Zbl 1228.81164 · doi:10.1103/PhysRevLett.101.080402
[10] Klaiman, S.; Cederbaum, L. S., Phys. Rev. A, 78, 062113 (2008) · doi:10.1103/PhysRevA.78.062113
[11] Cartarius, H.; Main, J.; Wunner, G., Phys. Rev. Lett., 99, 173003 (2007) · doi:10.1103/physrevlett.99.173003
[12] Cartarius, H.; Main, J.; Wunner, G., Phys. Rev. A, 79, 053408 (2009) · doi:10.1103/physreva.79.033412
[13] Lefebvre, R.; Atabek, O.; Šindelka, M.; Moiseyev, N., Phys. Rev. Lett., 103, 123003 (2009) · doi:10.1103/physrevlett.103.123003
[14] Gilary, I.; Mailybaev, A. A.; Moiseyev, N., Phys. Rev. A, 88, 010102(R) (2013) · doi:10.1103/physreva.88.010102
[15] Dembowski, C.; Dietz, B.; Gräf, H.-D.; Harney, H. L.; Heine, A.; Heiss, W. D.; Richter, A., Phys. Rev. E, 69, 056216 (2004) · doi:10.1103/physreve.69.056216
[16] Dietz, B.; Harney, H. L.; Kirillov, O. N.; Miski-Oglu, M.; Richter, A.; Schäfer, F., Phys. Rev. Lett., 106, 150403 (2011) · doi:10.1103/physrevlett.106.150403
[17] Uzdin, R.; Lefebvre, R., J. Phys. B: At., Mol. Opt. Phys., 43, 235004 (2010) · doi:10.1088/0953-4075/43/23/235004
[18] Kato, T., Perturbation Theory for Linear Operators (1976) · Zbl 0342.47009
[19] Seyranian, A. P.; Mailybaev, A. A., Multiparameter Stability Theory with Mechanical Applications (2003) · Zbl 1047.34063
[20] Bhamathi, G.; Sudarshan, E. C. G., Int. J. Mod. Phys. B, 10, 1531 (1996) · Zbl 1229.81013 · doi:10.1142/s0217979296000635
[21] Bohm, A.; Loewe, M.; Maxson, S.; Patuleanu, P.; Püntmann, C.; Gadella, M., J. Math. Phys., 38, 6072 (1997) · Zbl 0985.81128 · doi:10.1063/1.532203
[22] Antoniou, I. E.; Gadella, M.; Pronko, G. P., J. Math. Phys., 39, 2459 (1998) · Zbl 1001.81084 · doi:10.1063/1.532403
[23] Hernández, E.; Jáuregui, A.; Mondragón, A., Phys. Rev. A, 67, 022721 (2003) · doi:10.1103/physreva.67.022721
[24] Berry, M. V., Czech J. Phys., 54, 1039 (2004) · doi:10.1023/b:cjop.0000044002.05657.04
[25] Heiss, W. D., Czech J. Phys., 54, 1091 (2004) · doi:10.1023/b:cjop.0000044009.17264.dc
[26] Heiss, W. D., J. Phys. A: Math. Theor., 45, 444016 (2012) · Zbl 1263.81163 · doi:10.1088/1751-8113/45/44/444016
[27] Moiseyev, N.; Friedland, S., Phys. Rev. A, 22, 618 (1980) · doi:10.1103/physreva.22.618
[28] Gantmacher, F. R., Matrix Theory (1959)
[29] Horn, R. A.; Johnson, C. R., Matrix Analysis (2012)
[30] Nakanishi, N., Prog. Theor. Phys. Suppl., 51, 1 (1972) · doi:10.1143/ptps.51.1
[31] Günther, U.; Rotter, I.; Samsonov, B. F., J. Phys. A: Math. Theor., 40, 8815 (2007) · Zbl 1120.81035 · doi:10.1088/1751-8113/40/30/014
[32] Demange, G.; Graefe, E. M., J. Phys. A: Math. Theor., 45, 025303 (2012) · Zbl 1235.81079 · doi:10.1088/1751-8113/45/2/025303
[33] Rotter, I., J. Phys. A: Math. Theor., 42, 153001 (2009) · Zbl 1162.81398 · doi:10.1088/1751-8113/42/15/153001
[34] Rotter, I.; Bird, J. P., Rep. Prog. Phys., 78, 114001 (2015) · doi:10.1088/0034-4885/78/11/114001
[35] Heiss, W. D., J. Phys. A: Math. Theor., 41, 244010 (2008) · Zbl 1140.81382 · doi:10.1088/1751-8113/41/24/244010
[36] Nakanishi, N., Prog. Theor. Phys., 19, 607 (1958) · Zbl 0089.22005 · doi:10.1143/ptp.19.607
[37] Sudarshan, E. C. G.; Chiu, C. B.; Gorini, V., Phys. Rev. D, 18, 2914 (1978) · doi:10.1103/physrevd.18.2914
[38] Petrosky, T.; Prigogine, I.; Tasaki, S., Phys. A, 173, 175 (1991) · doi:10.1016/0378-4371(91)90257-d
[39] Bohm, A., Quantum Mechanics: Foundations and Applications (1993) · Zbl 0994.81501
[40] Hashimoto, K.; Kanki, K.; Hayakawa, H.; Petrosky, T., Prog. Theor. Exp. Phys., 2015, 023A02 · Zbl 1348.81239 · doi:10.1093/ptep/ptu183
[41] Feshbach, H., Ann. Phys., 5, 357 (1958) · Zbl 0083.44202 · doi:10.1016/0003-4916(58)90007-1
[42] Feshbach, H., Ann. Phys., 19, 287 (1962) · Zbl 0116.23202 · doi:10.1016/0003-4916(62)90221-x
[43] Cohen-Tannoudji, C.; Dupont-Roc, J.; Grynberg, G., Atom-Photon Interactions: Basic Processes and Applications (1992)
[44] Petrosky, T.; Prigogine, I., Adv. Chem. Phys., 99, 1 (1997)
[45] Hatano, N., Fortschr. Phys., 61, 238 (2013) · Zbl 1338.81256 · doi:10.1002/prop.201200064
[46] Hatano, N.; Ordonez, G., J. Math. Phys., 55, 122106 (2014) · Zbl 1319.81057 · doi:10.1063/1.4904200
[47] Ordonez, G.; Hatano, N., J. Phys. A: Math. Theor., 50, 405304 (2017) · Zbl 1376.81046 · doi:10.1088/1751-8121/aa85ae
[48] Tolstikhin, O. I.; Ostrovsky, V. N.; Nakamura, H., Phys. Rev. A, 58, 2077 (1998) · doi:10.1103/physreva.58.2077
[49] Garmon, S.; Ordonez, G., J. Math. Phys., 58, 062101 (2017) · Zbl 1418.81098 · doi:10.1063/1.4983809
[50] Bender, C. M., Rep. Prog. Phys., 70, 947 (2007) · doi:10.1088/0034-4885/70/6/r03
[51] Mostafazadeh, A., Int. J. Geom. Methods Mod. Phys., 7, 1191 (2010) · Zbl 1208.81095 · doi:10.1142/s0219887810004816
[52] Bender, C. M.; Berry, M. V.; Mandilara, A., J. Phys. A: Math. Gen., 35, L467 (2002) · Zbl 1066.81537 · doi:10.1088/0305-4470/35/31/101
[53] Garmon, S.; Gianfreda, M.; Hatano, N., Phys. Rev. A, 92, 022125 (2015) · doi:10.1103/physreva.92.022125
[54] Brody, D. C., J. Phys. A: Math. Theor., 49, 10LT03 (2016) · Zbl 1342.81214 · doi:10.1088/1751-8113/49/10/10lt03
[55] Tanaka, S.; Garmon, S.; Kanki, K.; Petrosky, T., Phys. Rev. A, 94, 022105 (2016) · doi:10.1103/physreva.94.022105
[58] Hinch, E. J., Perturbation Methods (1991) · Zbl 0746.34001
[59] Garmon, S.; Rotter, I.; Hatano, N.; Segal, D., Int. J. Theor. Phys., 51, 3536 (2012) · Zbl 1263.81229 · doi:10.1007/s10773-012-1240-5
[60] Brody, D. C.; Graefe, E. M., Entropy, 15, 3361 (2013) · Zbl 1371.82059 · doi:10.3390/e15093361
[61] Hashimoto, K.; Kanki, K.; Tanaka, S.; Petrosky, T., Phys. Rev. E, 93, 022132 (2016) · doi:10.1103/physreve.93.022132
[62] Hashimoto, K.; Kanki, K.; Garmon, S.; Tanaka, S.; Petrosky, T., Prog. Theor. Exp. Phys., 2016, 053A02 · Zbl 1361.82019 · doi:10.1093/ptep/ptw039
[63] Hashimoto, K.; Kanki, K.; Tanaka, S.; Petrosky, T.; Bagarello, F., Non-Hermitian Hamiltonians in Quantum Physics, 263 (2016)
[64] Kanki, K.; Hashimoto, K.; Petrosky, T.; Tanaka, S.; Bagarello, F., Non-Hermitian Hamiltonians in Quantum Physics, 289 (2016)
[65] Kimura, G.; Yuasa, K.; Imafuku, K., Phys. Rev. Lett., 89, 140403 (2002) · doi:10.1103/physrevlett.89.140403
[66] Qian, H.; Qian, M., Phys. Rev. Lett., 84, 2271 (2000) · doi:10.1103/physrevlett.84.2271
[67] Am-Shallem, M.; Kosloff, R.; Moiseyev, N., New J. Phys., 17, 113036 (2015) · Zbl 1452.81139 · doi:10.1088/1367-2630/17/11/113036
[68] Am-Shallem, M.; Kosloff, R.; Moiseyev, N., Phys. Rev. A, 93, 032116 (2016) · doi:10.1103/physreva.93.032116
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.