×

Computational dynamics of soft machines. (English) Zbl 1372.70026

Summary: Soft machine refers to a kind of mechanical system made of soft materials to complete sophisticated missions, such as handling a fragile object and crawling along a narrow tunnel corner, under low cost control and actuation. Hence, soft machines have raised great challenges to computational dynamics. In this review article, recent studies of the authors on the dynamic modeling, numerical simulation, and experimental validation of soft machines are summarized in the framework of multibody system dynamics. The dynamic modeling approaches are presented first for the geometric nonlinearities of coupled overall motions and large deformations of a soft component, the physical nonlinearities of a soft component made of hyperelastic or elastoplastic materials, and the frictional contacts/impacts of soft components, respectively. Then the computation approach is outlined for the dynamic simulation of soft machines governed by a set of differential-algebraic equations of very high dimensions, with an emphasis on the efficient computations of the nonlinear elastic force vector of finite elements. The validations of the proposed approaches are given via three case studies, including the locomotion of a soft quadrupedal robot, the spinning deployment of a solar sail of a spacecraft, and the deployment of a mesh reflector of a satellite antenna, as well as the corresponding experimental studies. Finally, some remarks are made for future studies.

MSC:

70E55 Dynamics of multibody systems
70-08 Computational methods for problems pertaining to mechanics of particles and systems
70B15 Kinematics of mechanisms and robots
Full Text: DOI

References:

[1] Morin, S.A., Shepherd, R.F., Kwok, S.W., et al.: Camouflage and display for soft machines. Science 337, 828-832 (2012) · doi:10.1126/science.1222149
[2] Rus, D., Tolley, M.T.: Design, fabrication and control of soft robots. Nature 521, 467-475 (2015) · doi:10.1038/nature14543
[3] Wehner, M., Truby, R.L., Fitzgerald, D.J., et al.: An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536, 451-455 (2016) · doi:10.1038/nature19100
[4] Iida, F., Laschi, C.: Soft robotics: challenges and perspectives. Procedia Comput. Sci. 7, 99-102 (2011) · doi:10.1016/j.procs.2011.12.030
[5] Li, T.F., Li, G.R., Liang, Y.M., et al.: Review of materials and structures in soft robotics. Chin. J. Theor. Appl. Mech. 48, 756-766 (2016)
[6] Ajaj, R.M., Beaverstock, C.S., Friswell, M.I.: Morphing aircraft: the need for a new design philosophy. Aerosp. Sci. Technol. 49, 154-166 (2016) · doi:10.1016/j.ast.2015.11.039
[7] Tsuda, Y., Mori, O., Funase, R., et al.: Achievement of IKAROS—Japanese deep space solar sail demonstration mission. Acta Astronaut. 82, 183-188 (2013) · doi:10.1016/j.actaastro.2012.03.032
[8] Wasfy, T.M., Noor, A.K.: Computational strategies for flexible multibody systems. Appl. Mech. Rev. 56, 553-613 (2003) · doi:10.1115/1.1590354
[9] Gerstmayr, J., Sugiyama, H., Mikkola, A.: Review on the absolute nodal coordinate formulation for large deformation analysis of multibody systems. J. Comput. Nonlinear Dyn. 8, 031016 (2013) · doi:10.1115/1.4023487
[10] Liu, C., Tian, Q., Hu, H.Y.: New spatial curved beam and shell elements of gradient deficient absolute nodal coordinate formulation. Nonlinear Dyn. 70, 1903-1918 (2012) · doi:10.1007/s11071-012-0582-0
[11] Gerstmayr, J., Shabana, A.A.: Analysis of thin beams and cables using the absolute nodal coordinate formulation. Nonlinear Dyn. 45, 109-130 (2006) · Zbl 1138.74391 · doi:10.1007/s11071-006-1856-1
[12] Liu, C., Tian, Q., Yan, D., et al.: Dynamic analysis of membrane systems undergoing overall motions, large deformations and wrinkles via thin shell elements of ANCF. Comput. Methods Appl. Mech. Eng. 258, 81-95 (2013) · Zbl 1286.74062 · doi:10.1016/j.cma.2013.02.006
[13] Chang, H.J., Liu, C., Tian, Q., et al.: Three new triangular shell elements of ANCF represented by Bézier triangles. Multibody Syst. Dyn. 35, 321-351 (2015) · Zbl 1331.65034 · doi:10.1007/s11044-015-9462-y
[14] Luo, K., Liu, C., Tian, Q., et al.: An efficient model reduction method for buckling analyses of thin shells based on IGA. Comput. Methods Appl. Mech. Eng. 309, 243-268 (2016) · Zbl 1439.74128 · doi:10.1016/j.cma.2016.06.006
[15] García De Jalón, J.: Twenty-five years of natural coordinates. Multibody Syst. Dyn. 18, 15-33 (2007) · Zbl 1180.70014 · doi:10.1007/s11044-007-9068-0
[16] Liu, C., Tian, Q., Hu, H.Y.: Dynamics of a large scale rigid-flexible multibody system with composite laminated plates. Multibody Syst. Dyn. 26, 283-305 (2011) · Zbl 1358.70016 · doi:10.1007/s11044-011-9256-9
[17] Shabana, A.A.: ANCF reference node for multibody system analysis. Proc. Inst. Mech. Eng. Part K J. Multibody Dyn. 229, 109-112 (2014)
[18] Volokh, K.Y.: Mechanics of Soft Materials. Israel Institute of Technology (2010) · Zbl 1272.74578
[19] Zhang, Y.Q., Tian, Q., Chen, L.P., et al.: Simulation of a viscoelastic flexible multibody system using absolute nodal coordinate and fractional derivative methods. Multibody Syst. Dyn. 21, 281-303 (2009) · Zbl 1350.70030 · doi:10.1007/s11044-008-9139-x
[20] Luo, K., Liu, C., Tian, Q., et al.: Nonlinear static and dynamic analysis of hyper-elastic thin shells via the absolute nodal coordinate formulation. Nonlinear Dyn. 85, 949-971 (2016) · Zbl 1355.74043 · doi:10.1007/s11071-016-2735-z
[21] Wang, Q.T., Tian, Q., Hu, H.Y.: Contact dynamics of elasto-plastic thin beams simulated via absolute nodal coordinate formulation. Acta Mech. Sin. 32, 525-534 (2016) · Zbl 1348.74204
[22] Wang, Q.T., Tian, Q., Hu, H.Y.: Dynamic simulation of frictional multi-zone contacts of thin beams. Nonlinear Dyn. 83, 1919-1937 (2016) · doi:10.1007/s11071-015-2456-8
[23] Wang, Q.T., Tian, Q., Hu, H.Y.: Dynamic simulation of frictional contacts of thin beams during large overall motions via absolute nodal coordinate formulation. Nonlinear Dyn. 77, 1411-1425 (2014) · doi:10.1007/s11071-014-1387-0
[24] Bernardi, C., Debit, N., Maday, Y.: Coupling finite element and spectral methods: first results. Math. Comput. 54, 21-39 (1990) · Zbl 0685.65098 · doi:10.1090/S0025-5718-1990-0995205-7
[25] Seitz, A., Farah, P., Kremheller, J., et al.: Isogeometric dual mortar methods for computational contact mechanics. Comput. Methods Appl. Mech. Eng. 301, 259-280 (2016) · Zbl 1425.74490 · doi:10.1016/j.cma.2015.12.018
[26] McDevitt, T.W., Laursen, T.A.: A mortar-finite element formulation for frictional contact problems. Int. J. Numer. Methods Eng. 48, 1525-1547 (2000) · Zbl 0972.74067 · doi:10.1002/1097-0207(20000810)48:10<1525::AID-NME953>3.0.CO;2-Y
[27] Wriggers, P.: Computational Contact Mechanics. Springer, Berlin (2006) · Zbl 1104.74002 · doi:10.1007/978-3-540-32609-0
[28] Kocak, S., Akay, H.U.: Parallel Schur complement method for large-scale systems on distributed memory computers. Appl. Math. Model 25, 873-886 (2001) · Zbl 0995.65132 · doi:10.1016/S0307-904X(01)00019-1
[29] Shepherda, R.F., Ilievskia, F., Choia, W., et al.: Multigait soft robot. Proc. Natl. Acad. Sci. 108, 20400-20403 (2011) · doi:10.1073/pnas.1116564108
[30] Zhao, J., Tian, Q., Hu, H.Y.: Deployment dynamics of a simplified spinning IKAROS solar sail via absolute coordinate based method. Acta Mech. Sin. 29, 132-142 (2013) · doi:10.1007/s10409-013-0002-9
[31] Zhou, X.J., Zhou, C.Y., Zhang, X.X., et al.: Ground simulation tests of spinning deployment dynamics of a solar sail. J. Vib. Eng. 28, 175-182 (2015)
[32] Li, P., Liu, C., Tian, Q., et al.: Dynamics of a deployable mesh reflector of satellite antenna: parallel computation and deployment simulation. J. Comput. Nonlinear Dyn. 11, 061005 (2016) · doi:10.1115/1.4033657
[33] Wang, Z., Tian, Q., Hu, H.Y.: Dynamics of rigid-flexible multibody systems with uncertain interval parameters. Nonlinear Dyn. 84, 527-548 (2016) · Zbl 1354.70023 · doi:10.1007/s11071-015-2504-4
[34] Wang, Z., Tian, Q., Hu, H.Y.: Nonlinear dynamics and chaotic control of a flexible multibody system with uncertain joint clearance. Nonlinear Dyn. 86, 1571-1597 (2016) · doi:10.1007/s11071-016-2978-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.