×

Further nonlinear dynamical analysis of simple jerk system with multiple attractors. (English) Zbl 1372.37096

Summary: This paper presents an analytical framework to investigate the dynamical behavior of a recent chaotic jerk model with multiple attractors. The methods of analytical analysis are adopted to complement numerical approach employed previously. In order to accomplish this goal, first, we amend the form of original system to a more general form and then apply both normal form theory and perturbation methods in order to investigate various dynamical behaviors exhibited by the system. The codimension one and codimension two bifurcations including pitchfork, Hopf, Bogdanov-Takens and generalized Hopf bifurcations are examined. The stability of bifurcated limit cycles is studied. The approximate solutions of homoclinic orbit and unstable limit cycle arising in the system are attained. The changes in dynamics relative to new parameters introduced in the model are also traced. Finally, numerical simulations and proposed circuit realization of the model are presented so as to validate theoretical results. We demonstrate that the jerk model has rich dynamics that make it ideal in realization of various applications including secure communications systems.

MSC:

37G10 Bifurcations of singular points in dynamical systems
34C37 Homoclinic and heteroclinic solutions to ordinary differential equations
37C29 Homoclinic and heteroclinic orbits for dynamical systems
34C23 Bifurcation theory for ordinary differential equations
94A60 Cryptography
Full Text: DOI

References:

[1] Izhikevich, E.M.: Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. MIT Press, Cambridge (2007)
[2] Stavroulakis, P.: Chaos Applications in Telecommunications. CRC Press, Boca Raton (2006)
[3] Strogatz, S.H.: Nonlinear Dynamics and Chaos with Applications to Physics, Biology, Chemistry, and Engineering. Westview Press, Boulder (2001) · Zbl 1343.37001
[4] Tu, P.N.V.: Dynamical Systems—An Introduction with Applications in Economics and Biology. Springer, Berlin (1995)
[5] El-Sayed, A.M.A., Nour, H.M., Elsaid, A., Matouk, A.E., Elsonbaty, A.: Dynamical behaviors, circuit realization, chaos control, and synchronization of a new fractional order hyperchaotic system. Appl. Math. Model. 40(5-6), 3516-3534 (2016) · Zbl 1459.34140 · doi:10.1016/j.apm.2015.10.010
[6] Elsonbaty, A., Hegazy, S.F., Obayya, S.S.A.: A new technique for ultrafast physical random number generation using optical chaos. SPIE Photonics Europe, 98921P-98921P-6
[7] Wang, Q., Yu, S., Li, C., Lu, J., Fang, X., Guyeux, C., Bahi, J.M.: Theoretical design and FPGA-based implementation of higher dimensional digital chaotic systems. IEEE Trans. Circuits 63(3), 401-412 (2016) · Zbl 1469.94118 · doi:10.1109/TCSI.2016.2515398
[8] Hong, Q., Xie, Q., Shen, Y., Wang, X.: Generating multi-double-scroll attractors via nonautonomous approach. Chaos 26(8), 083110 (2016) · Zbl 1378.37040 · doi:10.1063/1.4959538
[9] Elsonbaty, A., Hegazy, S.F., Obayya, S.S.A.: Simultaneous suppression of time-delay signature in intensity and phase of dual-channel chaos communication. IEEE J. Quantum Electron. 51(9), 1-9 (2015) · doi:10.1109/JQE.2015.2466176
[10] El-Sayed, A.M.A., Nour, H.M., Elsaid, A., Matouk, A.E., Elsonbaty, A.: Circuit realization, bifurcations, chaos and hyperchaos in a new 4D system. Appl. Math. Comput. 239, 333-345 (2014) · Zbl 1334.37029
[11] Nour, H.M., Elsaid, A., Elsonbaty, A.: Circuit realization, chaos synchronization and estimation of parameters of a hyperchaotic system with unknown parameters. J. Egypt. Math. Soc. 22(3), 550-557 (2014) · doi:10.1016/j.joems.2013.11.007
[12] El-Sayed, A.M.A., Elsaid, A., Nour, H.M., Elsonbaty, A.: Synchronization of different dimensional chaotic systems with time varying parameters, disturbances and input nonlinearities. J. Appl. Anal. Comput. 4(4), 323-338 (2014) · Zbl 1314.34117
[13] El-Sayed, A.M.A., Elsaid, A., Nour, H.M., Elsonbaty, A.: Dynamical behavior, chaos control and synchronization of a memristor-based ADVP circuit. Commun. Nonlinear Sci. Numer. Simul. 18, 148-170 (2013) · Zbl 1305.94120 · doi:10.1016/j.cnsns.2012.06.011
[14] Li, C., Liu, Y., Xie, T., Chen, M.Z.Q.: Breaking a novel image encryption scheme based on improved hyperchaotic sequences. Nonlinear Dyn. 73(3), 2083-2089 (2013) · Zbl 1281.68103 · doi:10.1007/s11071-013-0924-6
[15] Li, C.: Cracking a hierarchical chaotic image encryption algorithm based on permutation. Signal Process. 118, 203-210 (2016) · doi:10.1016/j.sigpro.2015.07.008
[16] Kocarev, L., Lian, S.: Chaos-Based Cryptography. Springer, Berlin (2011) · Zbl 1220.68015 · doi:10.1007/978-3-642-20542-2
[17] Muthuswamy, B., Chua, L.O.: Simplest chaotic circuit. Int. J. Bifurcat. Chaos. 20, 1567-1580 (2010) · doi:10.1142/S0218127410027076
[18] Kengne, J.: Coexistence of chaos with hyperchaos, period-3 doubling bifurcation, and transient chaos in the hyperchaotic oscillator with gyrators. Int. J. Bifurcat. Chaos. 25(4), 1550052 (2015) · doi:10.1142/S0218127415500522
[19] Kuznetsov, A.P., Kuznetsov, S.P., Mosekilde, E., Stankevich, N.V.: Co-existing hidden attractors in a radio-physical oscillator. J. Phys. A Math. Theor. 48, 125101 (2015) · Zbl 1316.34016 · doi:10.1088/1751-8113/48/12/125101
[20] Kengne, J., Chedjou, J.C., Fonzin Fozin, T., Kyamakya, K., Kenne, G.: On the analysis of semiconductor diode based chaotic and hyperchaotic chaotic generators—a case study. Nonlinear Dyn. 77, 373-386 (2014) · doi:10.1007/s11071-014-1301-9
[21] Li, C., Sprott, J.C.: Coexisting hidden attractors in a 4-D simplified Lorenz system. Int. J. Bifurcat. Chaos 24, 1450034 (2014) · Zbl 1296.34111 · doi:10.1142/S0218127414500345
[22] Cushing, J.M., Henson, S.M., Blackburn, C.C.: Multiple mixed attractors in a competition model. J. Biol. Dyn. 1, 347-362 (2007) · Zbl 1284.92108 · doi:10.1080/17513750701610010
[23] Kengne, J., Njitacke, Z.T., Fotsin, H.B.: Dynamical analysis of a simple autonomous jerk system with multiple attractors. Nonlinear Dyn. 83, 751-765 (2016) · Zbl 1343.34115 · doi:10.1007/s11071-015-2364-y
[24] Kuznetsov, N.V., Leonov, G.A., Vagaitsev, V.I.: Analytical-numerical method for attractor localization of generalized Chua’s system. IFAC Proc. 4, 29-33 (2010) · doi:10.3182/20100826-3-TR-4016.00009
[25] Kuznetsov, A.P., Kuznetsov, S.P., Stankevich, N.V.: A simple autonomous quasi-periodic self oscillator. Commun. Nonlinear Sci. Numer. Simul. 15, 1676-1681 (2010) · doi:10.1016/j.cnsns.2009.06.027
[26] Leonov, G.A., Kuznetsov, N.V., Vagaitsev, V.I.: Hidden attractor in smooth Chua systems. Phys. D 241, 1482-1486 (2012) · Zbl 1277.34052 · doi:10.1016/j.physd.2012.05.016
[27] Li, C.B., Sprott, J.C.: Coexisting hidden attractors in a 4-D simplified Lorenz system. Int. J. Bifurcat. Chaos 24, 1-12 (2014) · Zbl 1296.34111
[28] Ma, J., Wu, X., Chu, R., Zhang, L.: Selection of multi-scroll attractors in Jerk circuits and their verification using Pspice. Nonlinear Dyn. 76(4), 1951-1962 (2014) · doi:10.1007/s11071-014-1260-1
[29] Louodop, P., Kountchou, M., Fotsin, H., Bowong, S.: Practical finite-time synchronization of jerk systems: theory and experiment. Nonlinear Dyn. 78, 597-607 (2014) · Zbl 1278.34046 · doi:10.1007/s11071-014-1463-5
[30] Han, M., Yu, P.: Normal Forms, Melnikov Functions and Bifurcations of Limit Cycles. Springer, Berlin (2012) · Zbl 1252.37002 · doi:10.1007/978-1-4471-2918-9
[31] Meiss, J.D.: Differential Dynamical Systems. SIAM, Monographs on Mathematical Modeling and Computation (2007) · Zbl 1144.34001
[32] Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, Berlin (2003) · Zbl 1027.37002
[33] Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, 2nd edn. Springer, New York (1998) · Zbl 0914.58025
[34] Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer, Berlin (1983) · Zbl 0515.34001 · doi:10.1007/978-1-4612-1140-2
[35] Peng, G., Jiang, Y.L.: Computation of universal unfolding of the double-zero bifurcation in symmetric systems by a homological method. J. Differ. Equ. Appl. 19, 1501-1512 (2013) · Zbl 1282.34047 · doi:10.1080/10236198.2012.761980
[36] Chen, Y.Y., Chen, S.H., Sze, K.Y.: A hyperbolic Lindstedt-Poincaré method for homoclinic motion of a kind of strongly nonlinear autonomous oscillators. Acta Mech. Sin. 25, 721-729 (2009) · Zbl 1269.70031 · doi:10.1007/s10409-009-0276-0
[37] Chen, Y.Y., Chen, S.H.: Homoclinic and heteroclinic solutions of cubic strongly nonlinear autonomous oscillators by the hyperbolic perturbation method. Nonlinear Dyn. 58, 417-429 (2009) · Zbl 1183.70045 · doi:10.1007/s11071-009-9489-9
[38] Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, Hoboken (1993) · Zbl 0449.34001
[39] Nayfeh, A.H., Balachandran, B.: Motion near a Hopf bifurcation of three-dimensional system. Mech. Res. Commun. 17(4), 191-198 (1990) · Zbl 0698.70018 · doi:10.1016/0093-6413(90)90078-Q
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.