×

Porous medium flow with both a fractional potential pressure and fractional time derivative. (English) Zbl 1372.35328

Summary: The authors study a porous medium equation with a right-hand side. The operator has nonlocal diffusion effects given by an inverse fractional Laplacian operator. The derivative in time is also fractional and is of Caputo-type, which takes into account “memory”. The precise model is \[ D_t^\alpha u - \operatorname{div}(u(- \Delta)^{- \sigma}u) = f,\quad 0 < \sigma < \frac{1}{2}. \] This paper poses the problem over \(\{t \in \mathbb R^{+}, x \in \mathbb R^{n}\}\) with nonnegative initial data \(u(0,x) \geq 0\) as well as the right-hand side \(f \geq 0\). The existence for weak solutions when \(f,u(0,x)\) have exponential decay at infinity is proved. The main result is Hölder continuity for such weak solutions.

MSC:

35R11 Fractional partial differential equations
35K55 Nonlinear parabolic equations
26A33 Fractional derivatives and integrals
35D30 Weak solutions to PDEs
35B65 Smoothness and regularity of solutions to PDEs

References:

[1] Allen, M., Caffarelli, L. and Vasseur, A., A parabolic problem with a fractional time derivative, Arch. Ration. Mech. Anal., 221(2), 2016, 603-630. · Zbl 1338.35428 · doi:10.1007/s00205-016-0969-z
[2] Bernardis, A., Martín-Reyes, F. J., Stinga, P. R., et al., Maximum principles, extension problem and inversion for nonlocal one-sided equations, J. Diff. Equ., 260(7), 2016, 6333-6362. · Zbl 1339.35340
[3] Bucur, C. and Ferrari, F., An extension problem for the fractional derivative defined by Marchaud, Fract. Calc. Appl. Anal., 19(4), 2016, 867-887. · Zbl 1410.26014 · doi:10.1515/fca-2016-0047
[4] Caffarelli, L., Chan, C. H. and Vasseur, A., Regularity theory for parabolic nonlinear integral operators, J. Amer. Math. Soc., 24(3), 2011, 849-869. · Zbl 1223.35098 · doi:10.1090/S0894-0347-2011-00698-X
[5] Caffarelli, L., Soria, F. and Vázquez, J. L., Regularity of solutions of the fractional porous medium flow, J. Eur. Math. Soc. (JEMS), 15(5), 2013, 1701-1746. · Zbl 1292.35312 · doi:10.4171/JEMS/401
[6] Caffarelli, L. and Vazquez, J. L., Nonlinear porous medium flow with fractional potential pressure, Arch. Ration. Mech. Anal., 202(2), 2011, 537-565. · Zbl 1264.76105 · doi:10.1007/s00205-011-0420-4
[7] Caputo, M., Diffusion of fluids in porous media with memory, Geothermics, 28(1), 1999, 113-130. · doi:10.1016/S0375-6505(98)00047-9
[8] Del-Castillo-Negrete, D., Carreras, B. A. and Lynch, V. E., Fractional diffusion in plasma turbulence, Physics of Plasmas, 11(8), 2004, 3854-3864. · Zbl 1264.76105
[9] Del-Castillo-Negrete, D., Carreras, B. A. and Lynch, V. E., Nondiffusive transport in plasma turbulene: A fractional diffusion approach, Physical Review Letters, 94(6), 2004, 065003. · doi:10.1103/PhysRevLett.94.065003
[10] Di Nezza, E., Palatucci, G. and Valdinoci, E., Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math., 136(5), 2012, 521-573. · Zbl 1252.46023 · doi:10.1016/j.bulsci.2011.12.004
[11] Diethelm, K., The analysis of fractional differential equations, An application-oriented exposition using differential operators of Caputo type, Lecture Notes in Mathematics, Vol. 2004, Springer-Verlag, Berlin, 2010. · Zbl 1215.34001
[12] Gilbarg, D. and Trudinger, N. S., Elliptic partial differential equations of second order, Classics in Mathematics, Reprint of the 1998 edition, Springer-Verlag, Berlin, 2001. · Zbl 1042.35002
[13] Metzler, R. and Klafter, J., The random walk’s guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339(1), 2000, 1-77. · Zbl 0984.82032 · doi:10.1016/S0370-1573(00)00070-3
[14] Samko, S. G., Kilbas, A. A. and Marichev, O. I., Fractional integrals and derivatives, Gordon and Breach Science Publishers, Yverdon, 1993, Theory and applications, Edited and with a foreword by S. M. Nikol’skii, Translated from the 1987 Russian original, Revised by the authors. · Zbl 0818.26003
[15] Triebel, H., Theory of function spaces, Modern Birkhäuser Classics, Reprint of 1983 edition, Also published in 1983 by Birkhäuser Verlag, Birkhäuser/Springer Basel AG, Basel, 2010.
[16] Vázquez, J. L., The porous medium equation, Oxford Mathematical Monographs, Mathematical Theory, The Clarendon Press, Oxford University Press, Oxford, 2007. · Zbl 1107.35003
[17] Zacher, R., Global strong solvability of a quasilinear subdiffusion problem, J. Evol. Equ., 12(4), 2012, 813-831. · Zbl 1259.35220 · doi:10.1007/s00028-012-0156-0
[18] Zaslavsky, G. M., Chaos, fractional kinetics, and anomalous transport, Phys. Rep., 371(6), 2002, 461-580. · Zbl 0999.82053 · doi:10.1016/S0370-1573(02)00331-9
[19] Zhou, X. H., Xiao, W. L. and Chen, J. C., Fractional porous medium and mean field equations in Besov spaces, Electron. J. Differential Equations, 2014(199), 2014, 1-14. · Zbl 1302.35417
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.