×

An application of John ellipsoids to the Szegő kernel on unbounded convex domains. (English) Zbl 1372.32007

For strictly convex polynomials \(b:\mathbb R^n\longrightarrow\mathbb R\) of combined degree \((m_1,\dots,m_n)\in\mathbb N^n\) (i.e., of the form
\[ p(x)=\sum_{\alpha}c_{\alpha}x^{\alpha}, \] where the exponents of its pure terms of highest order are \(2m_1,\dots,2m_n\), respectively, and \[ \sum_{j=1}^n\frac{\alpha_j}{2m_j}\leq1 \] with equality if and only if there is a \(j\) such that \(\alpha_j=2m_j\)), define \[ \Omega_b:=\big\{(z_1,\dots,z_{n+1})\in\mathbb C^{n+1}:\operatorname{Im} z_{n+1}>b(\operatorname{Re} z_1,\dots,\operatorname{Re} z_n)\big\}. \] We use the following identification of the boundary of \(\Omega_b\) \[ \mathbb C^n\times\mathbb R\ni (z,t)\longmapsto(z,t+ib(\operatorname{Re} z_1,\dots,\operatorname{Re} z_n))\in\partial\Omega_b. \] Finally, let \(S\) denote the Szegő kernel of \(\Omega_b\).
The main result of the paper under review is the following estimate. Let \((x,y,t), (x',y',t')\in\partial\Omega_b\) and define \[ \tilde b(v)=b\Big(v+\frac{x+x'}{2}\Big)-\nabla b\Big(\frac{x+x'}{2}\Big)v-b\Big(\frac{x+x'}{2}\Big),\quad \delta(x,x')=b(x)+b(x')-2b\Big(\frac{x+x'}{2}\Big), \] and \[ w=t'-t+\nabla b\Big(\frac{x+x'}{2}\Big)(y'-y). \] Then \[ |S((x,y,t),(x',y',t'))|\leq c\Big(\sqrt{\delta^2+\tilde b(y-y')^2+w^2}\Big|\Big\{v:\tilde b(v)<\sqrt{\delta^2+\tilde b(y-y')^2+w^2}\Big\}\Big|^2\Big)^{-1}, \] where the constant \(c\) depends only on the combined degree \((m_1,\dots,m_n)\) and the dimension of the space.

MSC:

32A25 Integral representations; canonical kernels (Szegő, Bergman, etc.)

References:

[1] DOI: 10.2140/pjm.2010.246.75 · Zbl 1191.32002 · doi:10.2140/pjm.2010.246.75
[2] Peterson A, Estimates for the Szego projection on uniformly finite-type subdomains of \(\mathbb{C}\)2 (2015)
[3] Gindikin SG, Uspehi Mat. Nauk 19 pp 3– (1964)
[4] DOI: 10.1007/BF01406845 · Zbl 0289.32012 · doi:10.1007/BF01406845
[5] Boutet de Monvel L, Journées: Équations aux Dérivées Partielles de Rennes (1975) pp 123– (1976)
[6] DOI: 10.1215/S0012-7094-77-04429-5 · Zbl 0392.32014 · doi:10.1215/S0012-7094-77-04429-5
[7] DOI: 10.1512/iumj.1985.34.34013 · Zbl 0555.32014 · doi:10.1512/iumj.1985.34.34013
[8] Boas HP, Trans. Amer. Math. Soc 300 pp 109– (1987)
[9] Christ M, J. Amer. Math. Soc 1 pp 587– (1988)
[10] DOI: 10.1016/0001-8708(90)90036-M · Zbl 0763.32004 · doi:10.1016/0001-8708(90)90036-M
[11] DOI: 10.2307/1971438 · Zbl 0661.32028 · doi:10.2307/1971438
[12] DOI: 10.1007/PL00004593 · Zbl 0948.32004 · doi:10.1007/PL00004593
[13] DOI: 10.1007/BF02921866 · Zbl 1046.30023 · doi:10.1007/BF02921866
[14] DOI: 10.1007/s13373-013-0038-y · Zbl 1277.32002 · doi:10.1007/s13373-013-0038-y
[15] DOI: 10.1215/S0012-7094-80-04744-4 · Zbl 0456.32004 · doi:10.1215/S0012-7094-80-04744-4
[16] DOI: 10.1007/s11785-013-0312-8 · Zbl 1297.32005 · doi:10.1007/s11785-013-0312-8
[17] Diaz KP, Trans. Amer. Math. Soc 304 pp 141– (1987)
[18] Kang H, Trans. Amer. Math. Soc 315 pp 389– (1989)
[19] DOI: 10.1006/jfan.1995.1057 · Zbl 0853.32023 · doi:10.1006/jfan.1995.1057
[20] Carracino C, Illinois J. Math 51 pp 1363– (2007)
[21] Gilliam M, Illinois J. Math 55 pp 871– (2011)
[22] DOI: 10.1080/17476933.2013.783026 · Zbl 1293.32005 · doi:10.1080/17476933.2013.783026
[23] Nagel A, Annals of mathematics studies 112, in: Beijing lectures in harmonic analysis (Beijing, 1984) pp 241– (1986)
[24] DOI: 10.1090/S0273-0979-1988-15598-X · Zbl 0642.32014 · doi:10.1090/S0273-0979-1988-15598-X
[25] DOI: 10.2307/1971487 · Zbl 0667.32016 · doi:10.2307/1971487
[26] DOI: 10.1007/BF01389371 · Zbl 0651.35017 · doi:10.1007/BF01389371
[27] Francsics G, Proc. Amer. Math. Soc 123 pp 3161– (1995)
[28] DOI: 10.1080/17476933.2015.1015531 · Zbl 1326.32013 · doi:10.1080/17476933.2015.1015531
[29] DOI: 10.2307/2007057 · Zbl 0666.42010 · doi:10.2307/2007057
[30] DOI: 10.1006/aima.1994.1082 · Zbl 0816.32018 · doi:10.1006/aima.1994.1082
[31] Benguria S. Estimates for the Szego kernel on unbounded convex domains [PhD thesis]. Madison (WI): University of Wisconsin-Madison; 2014.
[32] Wiener N, The Fourier integral and certain of its applications (1959) · Zbl 0081.32102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.