×

Bounds on the regularity of toric ideals of graphs. (English) Zbl 1372.14044

Let \(R=\mathbb{K}[x_1,\ldots,x_n]\) be a polynomial ring over a field \(\mathbb{K}\) and let \(M\) be a finitely generated graded \(R\)-module which has a minimal graded free resolution \[ \cdots \longrightarrow F_k\longrightarrow \cdots\longrightarrow F_0\longrightarrow M\longrightarrow0. \] Also, let \(a_k\) be the maximum of the degrees of the generators of \(F_k\). The Castelnuovo-Mumford regularity is defined as the smallest \(r\in\mathbb{Z}\) such that \(r\geq a_k-k\) for all \(k\).
The authors study bounds on this notion in toric ideals of graphs. In their first main result, they study the case that a finite simple graph \(G\) has an induced subgraph \(H\) of the form \(H=K_{n_1,n_1}\sqcup\cdots\sqcup K_{n_t,n_t}\) where each \(n_i\geq2\), where \(K_{n_i,n_i}\) is the complete bipartite graph. In this case, they prove that \[ \text{reg}(I_G)\geq n_1+n_2+\cdots+n_t-(t-1). \] In their second main result, they study the Castelnuovo-Mumford regularity for chordal bipartite graph ideals. Let \(G\) be a chordal bipartite graph with bartition \(V=\{x_1,\ldots,x_n\}\cup\{y_1,\ldots,y_m\}\) and we consider the numbers \(r=\mid \{x_i\;: \;\deg(x_i)=1\}\mid\) and \(s=\mid \{y_j\;: \;\deg(x_j)=1\}\mid\). The authors prove that \[ \text{reg}(I_G)\leq \min (n-r,m-s). \] By using their techniques, they close the manuscript by giving a new combinatorial proof for the graded Betti numbers of the toric ideal \(I_G\), where the graph \(G\) is the complete bipartite graph \(K_{2,n}\).

MSC:

14M25 Toric varieties, Newton polyhedra, Okounkov bodies
13D02 Syzygies, resolutions, complexes and commutative rings
05E40 Combinatorial aspects of commutative algebra
52B22 Shellability for polytopes and polyhedra

Software:

CoCoA; Macaulay2

References:

[1] Abbott, J.; Bigatti, A. M.; Lagorio, G., CoCoA-5: a system for doing computations in commutative algebra, available at
[2] Aramova, A.; Herzog, J., Koszul cycles and Eliahou-Kervaire type resolutions, J. Algebra, 181, 347-370 (1996) · Zbl 0868.13014
[3] Björner, A., Topological Methods. Handbook of Combinatorics, vol. 2, 1819-1872 (1995), Elsevier: Elsevier Amsterdam · Zbl 0851.52016
[4] Björner, A.; Wachs, M., Shellable nonpure complexes and posets. I, Trans. Amer. Math. Soc., 348, 1299-1327 (1996) · Zbl 0857.05102
[5] Briales-Morales, E.; Pisón-Casares, P.; Vigneron-Tenorio, A., The regularity of a toric variety, J. Algebra, 237, 165-185 (2001) · Zbl 1042.14024
[6] Corso, A.; Nagel, U., Monomial and toric ideals associated to Ferrers graphs, Trans. Amer. Math. Soc., 361, 1371-1395 (2009) · Zbl 1228.05068
[7] Eagon, J.; Northcott, D. G., Ideals defined by matrices and a certain complex associated to them, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 269, 188-204 (1962) · Zbl 0106.25603
[8] Eisenbud, D.; Goto, S., Linear free resolutions and minimal multiplicity, J. Algebra, 88, 89-133 (1984) · Zbl 0531.13015
[9] Ene, V.; Zarojanu, A., On the regularity of binomial edge ideals, Math. Nachr., 288, 19-24 (2015) · Zbl 1310.13021
[10] Grayson, D. R.; Stillman, M. E., Macaulay2, a software system for research in algebraic geometry
[11] Herzog, J.; Hibi, T., Monomial Ideals (2011), Springer · Zbl 1206.13001
[12] Herzog, J.; Hibi, T.; Hreinsdotir, F.; Kahle, T.; Rauh, J., Binomial edge ideals and conditional independence statements, Adv. in Appl. Math., 45, 317-333 (2010) · Zbl 1196.13018
[13] Hochster, M., Cohen-Macaulay rings, combinatorics, and simplicial complexes, (Proc. of the 2nd Oklahoma Conf.. Proc. of the 2nd Oklahoma Conf., Lect. Notes Pure Appl. Math., vol. 26 (1977), Marcel Dekker), 171-224 · Zbl 0351.13009
[14] Katzman, M., Characteristic-independence of Betti numbers of graph ideals, J. Combin. Theory Ser. A, 113, 435-454 (2006) · Zbl 1102.13024
[15] Matsuda, K.; Murai, S., Regularity bounds for binomial edge ideals, J. Commut. Algebra, 5, 141-149 (2013) · Zbl 1272.13018
[16] Miller, E.; Sturmfels, B., Combinatorial Commutative Algebra (2005), Springer · Zbl 1090.13001
[17] Ohsugi, H.; Hibi, T., Toric ideals generated by quadratic binomials, J. Algebra, 218, 509-527 (1999) · Zbl 0943.13014
[18] Ohsugi, H.; Hibi, T., Koszul bipartite graphs, Adv. in Appl. Math., 22, 25-28 (1999) · Zbl 0916.05046
[19] Ohtami, M., Graphs and ideals generated by some 2-minors, Comm. Algebra, 39, 905-917 (2011) · Zbl 1225.13028
[20] Peeva, I., Graded Syzygies (2010), Springer · Zbl 1213.13002
[21] Reyes, E.; Tatakis, C.; Thoma, A., Minimal generators of toric ideals of graphs, Adv. in Appl. Math., 48, 64-78 (2012) · Zbl 1266.14041
[22] Roth, M.; Van Tuyl, A., On the linear strand of an edge ideal, Comm. Algebra, 35, 821-832 (2007) · Zbl 1123.13012
[23] Sturmfels, B., Equations defining toric varieties, (Algebraic Geometry. Algebraic Geometry, Santa Cruz, 1995. Algebraic Geometry. Algebraic Geometry, Santa Cruz, 1995, Proc. Sympos. Pure Math., vol. 62, Part 2 (1997), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 437-449 · Zbl 0914.14022
[24] Taylor, D., Ideals Generated by Monomials in an \(R\)-Sequence (1966), University of Chicago, PhD thesis
[25] Villarreal, R. H., Monomial Algebras (2001), Marcel Dekker, Inc.: Marcel Dekker, Inc. New York · Zbl 1002.13010
[26] Woodroofe, R., Matchings, coverings, and Castelnuovo-Mumford regularity, J. Commut. Algebra, 6, 287-304 (2014) · Zbl 1330.13040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.