×

Vacuum dynamics in the universe versus a rigid \(\Lambda=\mathrm{const.}\). (English) Zbl 1371.83006

Summary: In this year, in which we celebrate 100 years of the cosmological term, \(\Lambda\), in Einstein’s gravitational field equations, we are still facing the crucial question whether \(\Lambda\) is truly a fundamental constant or a mildly evolving dynamical variable. After many theoretical attempts to understand the meaning of \(\Lambda\), and in view of the enhanced accuracy of the cosmological observations, it seems now mandatory that this issue should be first settled empirically before further theoretical speculations on its ultimate nature. In this review, we summarize the situation of some of these studies. Devoted analyses made recently show that the \(\Lambda=\mathrm{const.}\) hypothesis, despite being the simplest, may well not be the most favored one. The overall fit to the cosmological observables SNIa+BAO+\(H(z)\)+LSS+BBN+CMB single out the class of “running” vacuum models (RVMs), in which \(\Lambda=\Lambda(H)\) is an affine power-law function of the Hubble rate. It turns out that the performance of the RVM as compared to the “concordance” \(\Lambda\)CDM model (with \(\Lambda=\mathrm{const.}\)) is much better. The evidence in support of the RVM may reach \(\sim 4\sigma\) c.l., and is bolstered with Akaike and Bayesian criteria providing strong evidence in favor of the RVM option. We also address the implications of this framework on the tension between the CMB and local measurements of the current Hubble parameter.

MSC:

83-02 Research exposition (monographs, survey articles) pertaining to relativity and gravitational theory
83F05 Relativistic cosmology

References:

[1] Einstein, A., Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie, Sitzungsber. Königl. Preuss. Akad. Wiss. Phys.-Math. KlasseVI, 142 (1917). · JFM 46.1295.01
[2] Einstein, A., Zum kosmologischen Problem der allgemeinen Relativitätstheorie, Sitzungsber. Königl. Preuss. Akad. Wiss. Phys.-Math. KlasseXII, 235 (1931). · JFM 57.1571.02
[3] Einstein, A. and de Sitter, W., On the relation between the expansion and the mean density of the universe, Proc. Nat. Acad. Sci.18, 213-214 (1932). · JFM 58.0913.02
[4] Lemaître, G., Evolution of the expanding universe, Proc. Nat. Acad. Sci.20, 12-17 (1934). · JFM 60.0769.01
[5] Y. B. Zeldovich, Cosmological constant and elementary particles, JETP Lett.6, 316 (1967); Pisma Zh. Eksp. Teor. Fiz.6, 883 (1967); Cosmological constant and the theory of elementary particles, Sov. Phys. Usp.11, 381 (1968); republished in Gen. Rel. Grav.40, 1557 (2008) (edited by V. Sahni and A. Krasinski).
[6] Weinberg, S., Rev. Mod. Phys.61, 1 (1989). · Zbl 1129.83361
[7] V. Sahni and A. Starobinsky, Int. J. Mod. Phys. A9, 373 (2000); T. Padmanabhan, Phys. Rep.380, 235 (2003); P. J. E. Peebles and B. Ratra, Rev. Mod. Phys.75, 559 (2003).
[8] Solà, J., Cosmological constant and vacuum energy: Old and new ideas, 453, 012015 (2013), arXiv:1306.1527.
[9] (Ade, P. A. R.et al.), Planck 2015 results. XIII, Astron. Astrophys.594, A13 (2016).
[10] (Aghanim, N.et al.), Planck 2016 intermediate results. XLVI, Astron. Astrophys.596, A107 (2016).
[11] Solà, J. and Gómez-Valent, A., Int. J. Mod. Phys. D24, 1541003 (2015). · Zbl 1311.83079
[12] Solà, J., Int. J. Mod. Phys. D24, 1544027 (2015). · Zbl 1329.83240
[13] Gómez-Valent, A., Karimkhani, E. and Solà, J., JCAP12, 048 (2015).
[14] Gómez-Valent, A. and Solà, J., Mon. Not. R. Astron. Soc.448, 2810 (2015).
[15] Gómez-Valent, A., Solà, J. and Basilakos, S., JCAP01, 004 (2015).
[16] Basilakos, S., Plionis, M. and Solà, J., Phys. Rev. D80, 3511 (2009).
[17] Grande, J., Solà, J., Basilakos, S. and Plionis, M., JCAP1108, 007 (2011).
[18] Solà, J., Gómez-Valent, A. and de Cruz Pérez, J., Astrophys. J.811, L14 (2015).
[19] Solà, J., Gómez-Valent, A. and de Cruz Pérez, J., Astrophys. J.836, 43 (2017).
[20] Solà, J., Gómez-Valent, A. and de Cruz Pérez, J., Mod. Phys. Lett. A32, 1750054.
[21] J. Solà, J. de Cruz Pérez and A. Gómez-Valent, Towards the firsts compelling signs of vacuum dynamics in modern cosmological observations, arXiv:1703.08218.
[22] J. Solà, A. Gómez-Valent and J. de Cruz Pérez, The \(H_0\) tension in light of vacuum dynamics in the Universe, arXiv:1705.06723. · Zbl 1387.83140
[23] Fritzsch, H. and Solà, J., Class. Quantum Grav.29, 215002 (2012). · Zbl 1266.83187
[24] Solà, J., Mod. Phys. Lett. A30, 1502004 (2015).
[25] Fritzsch, H. and Solà, J., Mod. Phys. Lett. A30, 1540034 (2015).
[26] Solà, J. (ed.), Fundamental constants in physics and their time variation, Mod. Phys. Lett. A30 (2015), Special Issue.
[27] Solà, J., Int. J. Mod. Phys. A29, 1444016 (2014).
[28] Fritzsch, H., Nunes, R. C. and Solà, J., Eur. Phys. J. C77, 193 (2017).
[29] Peebles, P. J. E., Astrophys. J.284, 439 (1984).
[30] Solà, J., J. Phys. A41, 164066 (2008). · Zbl 1140.83411
[31] Lima, J. A. S., Basilakos, S. and Solà, J., Mon. Not. R. Astron. Soc.431, 923 (2013).
[32] Lima, J. A. S., Basilakos, S. and Solà, J., Gen. Rel. Grav.47, 40 (2015). · Zbl 1317.83111
[33] Lima, J. A. S., Basilakos, S. and Solà, J., Eur. Phys. J. C76, 228 (2016).
[34] Salvatelli, V.et al., Phys. Rev. Lett.113, 181301 (2014).
[35] Li, Y. H., Zhang, J. F. and Zhang, X., Phys. Rev. D93, 023002 (2016).
[36] Murgia, R., Gariazzo, S. and Fornengo, N., JCAP1604, 014 (2016).
[37] Turner, S. M. and White, M., Phys. Rev. D56, R4439 (1997).
[38] M. Chevallier and D. Polarski, Int. J. Mod. Phys. D10, 213 (2001); E. V. Linder, Phys. Rev. Lett.90, 091301 (2003); Phys. Rev. D70, 023511 (2004).
[39] Grande, J., Pelinson, A. and Solà, J., Phys. Rev. D79, 043006 (2009).
[40] Grande, J., Opher, R., Pelinson, A. and Solà, J., J. Cosmol. Astropart. Phys.0712, 007 (2007).
[41] A. Gómez-Valent and J. Solà, in preparation.
[42] Akaike, H., IEEE Trans. Autom. Control19, 716 (1974).
[43] Schwarz, G., Annals of Statistics6, 461 (1978).
[44] Kass, R. E. and Raftery, A., J. Amer. Statist. Assoc.90, 773 (1995). · Zbl 0846.62028
[45] Burnham, K. P. and Anderson, D. R., Model Selection and Multimodel Inference (Springer, New York, 2002). · Zbl 1005.62007
[46] Riess, A. G.et al., Astrophys. J.826, 56 (2016).
[47] Sandage, A., The ability of the 200-inch telescope to discriminate between selected world models, Astrophys. J.133, 355 (1961).
[48] Tammann, G. A. and Sandage, A., The hubble constant and HST, in The Impact of HST on European Astronomy, Astrophysics and Space Science Proceedings, ed. Macchetto, F. (Springer, Dordrecht, 2010), p. 289.
[49] G. A. Tammann and B. Reindl, IAU Symp.289, 13 (2013); Astron. Astrophys.549, A136 (2013).
[50] Baade, W., Astrophys. J.100, 137 (1944).
[51] Tammann, G. A., Publ. Astron. Soc. Pac.108, 1083 (1996).
[52] van den Bergh, S., Publ. Astron. Soc. Pac.108, 1091 (1996).
[53] Riess, A. G.et al., Astron. J.116, 1009 (1998).
[54] Perlmutter, S.et al., Astrophys. J.517, 565 (1999).
[55] Chen, G. and Ratra, B., Publ. Astron. Soc. Pac.123, 1127 (2011).
[56] Bethapudi, S. and Desai, S., Eur. Phys. J. Plus132, 78 (2017).
[57] Valentino, E. D., Melchiorri, A. and Silk, J., Phys. Lett. B761, 242 (2016).
[58] Bernal, J. L., Verde, L. and Riess, A. G., JCAP1610, 019 (2016).
[59] Shafieloo, A. and Hazra, D. K., JCAP1704, 012 (2017).
[60] Cardona, W., Kunz, M. and Pettorino, V., JCAP1703, 056 (2017).
[61] E. D. Valentino, A. Melchiorri, E. V. Linder and J. Silk, Constraining dark energy dynamics in extended parameter space, arXiv:1704.00762.
[62] E. D. Valentino, A. Melchiorri and O. Mena, Can interacting dark energy solve the \(H_0\) tension?, arXiv:1704.08342.
[63] B. R. Zhang et al., A blinded determination of \(H_0\) from low-redshift Type Ia supernovae, calibrated by Cepheid variables, arXiv:1706.07573.
[64] Y. Wang, L. Xu and G.-B. Zhao, A measurement of the Hubble constant using galaxy redshift surveys, arXiv:1706.09149.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.