×

A high order HDG method for curved-interface problems via approximations from straight triangulations. (English) Zbl 1371.65121

Summary: We propose a novel technique to solve elliptic problems involving a non-polygonal interface/boundary. It is based on a high order hybridizable discontinuous Galerkin (HDG) method where the mesh does not exactly fit the domain. We first study the case of a curved-boundary value problem with mixed boundary conditions since it is crucial to understand the applicability of the technique to curved interfaces. The Dirichlet data is approximated by using the transferring technique developed in a previous paper. The treatment of the Neumann data is new. We then extend these ideas to curved interfaces. We provide numerical results showing that, in order to obtain optimal high order convergence, it is desirable to construct the computational domain by interpolating the boundary/interface using piecewise linear segments. In this case the distance of the computational domain to the exact boundary is only \(O(h^2)\).

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs

References:

[1] Barrett, J.W., Elliott, C.M.: A finite-element method for solving elliptic equations with Neumann data on a curved boundary using unfitted meshes. IMA J. Numer. Anal. 4, 309-325 (1984) · Zbl 0574.65121 · doi:10.1093/imanum/4.3.309
[2] Barrett, J.W., Elliott, C.M.: A practical finite element approximation of a semi-definite Neumann problem on a curved domain. Numer. Math. 51, 23-36 (1987) · Zbl 0617.65110 · doi:10.1007/BF01399693
[3] Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47, 1319-1365 (2009) · Zbl 1205.65312 · doi:10.1137/070706616
[4] Cockburn, B., Gopalakrishnan, J., Sayas, F.-J.: A projection-based error analysis of HDG methods. Math. Comput. 79, 1351-1367 (2010) · Zbl 1197.65173 · doi:10.1090/S0025-5718-10-02334-3
[5] Cockburn, B., Gupta, D., Reitich, F.: Boundary-conforming discontinuous Galerkin methods via extensions from subdomains. SIAM J. Sci. Comput. 42, 144-184 (2010) · Zbl 1203.65250
[6] Cockburn, B., Guzmán, J., Wang, H.: Superconvergent discontinuous Galerkin methods for second-order elliptic problems. Math. Comput. 78, 1-24 (2009) · Zbl 1198.65194 · doi:10.1090/S0025-5718-08-02146-7
[7] Cockburn, B., Sayas, F.-J., Solano, M.: Coupling at a distance HDG and BEM. SIAM J. Sci. Comput. 34, A28-A47 (2012) · Zbl 1241.65105 · doi:10.1137/110823237
[8] Cockburn, B., Qiu, W., Solano, M.: A priori error analysis for HDG methods using extensions from subdomains to achieve boundary-conformity. Math. Comput. 83, 665-699 (2014) · Zbl 1290.65110 · doi:10.1090/S0025-5718-2013-02747-0
[9] Cockburn, B., Solano, M.: Solving Dirichlet boundary-value problems on curved domains by extensions from subdomains. SIAM J. Sci. Comput. 34, A497-A519 (2012) · Zbl 1238.65111 · doi:10.1137/100805200
[10] Cockburn, B., Solano, M.: Solving convection-diffusion problems on curved domains by extensions from subdomain. J. Sci. Comput. 59(2), 512-543 (2014) · Zbl 1304.65246 · doi:10.1007/s10915-013-9776-y
[11] Huynh, L.N.T., Nguyen, N.C., Peraire, J., Khoo, B.C.: A high-order hybridizable discontinuous Galerkin method for elliptic interface problems. Int. J. Numer. Methods Eng. 93, 183-200 (2013) · Zbl 1352.65513 · doi:10.1002/nme.4382
[12] Lenoir, M.: Optimal isoparametric finite elements and errors estimates form domains involving curved boundaries. SIAM J. Numer. Anal. 23, 562-580 (1986) · Zbl 0605.65071 · doi:10.1137/0723036
[13] Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for linear convection-diffusion equations. J. Comput. Phys. 228, 3232-3254 (2009) · Zbl 1187.65110 · doi:10.1016/j.jcp.2009.01.030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.