×

Exact boundary condition for semi-discretized Schrödinger equation and heat equation in a rectangular domain. (English) Zbl 1371.65099

Summary: A convolution type exact/transparent boundary condition is proposed for simulating a semi-discretized linear Schrödinger equation on a rectangular computational domain. We calculate the kernel functions for a single source problem, and subsequently those over the rectangular domain. Approximate kernel functions are pre-computed numerically from discrete convolutionary equations. With a Crank-Nicolson scheme for time integration, the resulting approximate boundary conditions effectively suppress boundary reflections, and resolve the corner effect. The proposed boundary treatment, with a parameter modified, applies readily to a semi-discretized heat equation.

MSC:

65M20 Method of lines for initial value and initial-boundary value problems involving PDEs
35Q41 Time-dependent Schrödinger equations and Dirac equations
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35K05 Heat equation
Full Text: DOI

References:

[1] Greengard, L., Lin, P.: On the Numerical Solution of the Heat Equation in Unbounded Domains (Part I). Tech. Note 98002, Courant Mathematics and Computing Laboratory, New York University (1998)
[2] Wu, X., Zhang, J.: High-order local absorbing boundary conditions for heat equation in unbounded domains. J. Comput. Math 29, 74 (2011) · Zbl 1249.65178
[3] Fevens, T., Jiang, H.: Absorbing boundary conditions for the Schrödinger equation. SIAM J. Sci. Comput 21(1), 255 (1999) · Zbl 0938.35013 · doi:10.1137/S1064827594277053
[4] Wu, X., Sun, Z.: Convergence of difference scheme for heat equation in unbounded domains using artificial boundary conditions. Appl. Numer. Math 50, 261 (2004) · Zbl 1053.65074 · doi:10.1016/j.apnum.2004.01.001
[5] Arnold, A., Ehrhardt, M., Sofronov, I.: Approximation, stability and fast calculation of non-local boundary conditions for the Schrödinger equation. Commun. Math. Sci 1(3), 501 (2003) · Zbl 1085.65513 · doi:10.4310/CMS.2003.v1.n3.a7
[6] Hagstrom, T., Warburton, T.: A new auxiliary variable formulation of high-order local radiation boundary conditions: corner compatibility conditions and extensions to first-order systems. Wave Motion 39, 327 (2004) · Zbl 1163.74364 · doi:10.1016/j.wavemoti.2003.12.007
[7] Alpert, B., Greengard, L., Hagstrom, T.: Rapid evaluation of nonreflecting boundary kernels for time-domain wave propagation. SIAM J. Numer. Anal 37, 1138 (2000) · Zbl 0963.65104 · doi:10.1137/S0036142998336916
[8] Grote, M., Keller, J.: Nonreflecting boundary conditions for time dependent scattering. J. Comput. Phys. 52, 127 (1996) · Zbl 0860.65080
[9] Baskakov, V., Popov, A.: Implementation of transparent boundaries for numerical solution of the Schrödinger equation. Wave Motion 14, 123 (1991) · Zbl 1159.78349 · doi:10.1016/0165-2125(91)90053-Q
[10] Han, H., Huang, Z.: Exact artificial boundary conditions for the Schrödinger equation in \[\mathbb{R}^2\] R2. Commun. Math. Sci. 2(1), 79 (2004) · Zbl 1089.35524 · doi:10.4310/CMS.2004.v2.n1.a5
[11] Arnold, A., Ehrhardt, M., Schulte, M., Sofronov, I.: Discrete transparent boundary conditions for the Schrödinger equation on circular domains. Commun. Math. Sci 10(3), 889 (2012) · Zbl 1256.35103 · doi:10.4310/CMS.2012.v10.n3.a9
[12] Jiang, S., Greengard, L.: Nonreflecting boundary conditions for the time-dependent Schrödinger equation in two dimensions. Commun. Pure. Appl. Math 61, 261 (2008) · Zbl 1146.35005 · doi:10.1002/cpa.20200
[13] Antoine, X., Besse, C., Mouysset, V.: Numerical schemes for the simulation of the two-dimensional Schrödinger equation using non-reflecting boundary conditions. Math. Comput. 73, 1779 (2004) · Zbl 1053.65072 · doi:10.1090/S0025-5718-04-01631-X
[14] Antoine, X., Besse, C., Klein, P.: Absorbing boundary conditions for general nonlinear Schrödinger equations. SIAM J. Sci. Comput. 33(2), 1008 (2011) · Zbl 1231.35223 · doi:10.1137/090780535
[15] Antoine, X., Besse, C., Klein, P.: Absorbing boundary conditions for the two-dimensional Schrödinger equation with an exterior potential. Part II: discretization and numerical results. Numer. Math. 125(2), 191 (2013) · Zbl 1457.65093 · doi:10.1007/s00211-013-0542-8
[16] Li, H., Wu, X., Zhang, J.: Local artificial boundary conditions for Schrödinger and heat equations by using high-order azimuth derivatives on circular artificial boundary. Comput. Phys. Commun. 185, 1606 (2014) · Zbl 1348.35087 · doi:10.1016/j.cpc.2014.03.001
[17] Bian, L., Ji, S., Pang, G., Tang, S.: Accurate boundary treatment for transient Schrödinger equation under polar coordinates. Comput. Math. Appl. 71, 479 (2016) · Zbl 1443.35117 · doi:10.1016/j.camwa.2015.12.018
[18] Antoine, X., Arnold, A., Besse, C., Ehrhardt, M., Schädle, A.: A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations. Commun. Comput. Phys. 4(4), 729 (2008) · Zbl 1364.65178
[19] Han, H., Huang, Z.: Exact and approximating boundary conditions for the parabolic problems on unbounded domains. Comput. Math. Appl. 44, 655 (2002) · Zbl 1030.35092 · doi:10.1016/S0898-1221(02)00180-3
[20] Du, Q., Han, H., Zhang, J., Zheng, C.: Numerical solution of the two-dimensional nonlocal wave equation on unbounded domain, preprint · Zbl 1392.82036
[21] Pang, G., Tang, S.: Time history kernel functions for square lattice. Comput. Mech. 48, 699 (2011) · Zbl 1334.70002 · doi:10.1007/s00466-011-0615-4
[22] Katsura, S., Inawashiro, S.: Lattice Greens functions for the rectangular and the square lattices at arbitrary points. J. Math. Phys. 12, 1622 (1971) · Zbl 0224.33025 · doi:10.1063/1.1665785
[23] Tang, S., Hou, T., Liu, W.: A pseudo-spectral multiscale method: interfacial conditions and coarse grid equations. J. Comput. Phys. 213(1), 57-85 (2006) · Zbl 1089.65110 · doi:10.1016/j.jcp.2005.08.001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.