×

Stabilization of a coupled hyperbolic equations with a heat equation of second sound. (English) Zbl 1371.35307

Summary: In this article, we study the energy decay rate for a coupled hyperbolic-parabolic system where the heat conduction is given via Catteneo’s law. The system consists of two wave equations and two heat equations coupled in a certain pattern. We proved an exponential decay result which depends on a new stability number \(\chi_0\). We proved the polynomial decay result with an estimation of the decay rates. Our result is established using the frequency-domain method.

MSC:

35Q93 PDEs in connection with control and optimization
93D15 Stabilization of systems by feedback
35Q74 PDEs in connection with mechanics of deformable solids
74F05 Thermal effects in solid mechanics
35B35 Stability in context of PDEs
Full Text: DOI

References:

[1] Ayadi, M.A., Bchatnia, A., Hamouda, M., Messaoudi, S.A.: General decay in some Timoshenko-type systems with thermoelasticity second sound. Adv. Nonlinear Anal. 4(4), 263-284 (2015) · Zbl 1329.35301
[2] Casas, P.S., Quintanilla, R.: Exponential decay in one-dimensional porous-thermo-elasticity. Mech. Research Commun. 32, 652-658 (2005) · Zbl 1192.74156 · doi:10.1016/j.mechrescom.2005.02.015
[3] Han, Z.J., Xu, G.Q.: Exponential decay result in non-uniform porous-thermo-elasticity model of Lord-Shulman type. Discret. Contin. Dyn. Syst. B 17, 57-77 (2012) · Zbl 1235.35038 · doi:10.3934/dcdsb.2012.17.57
[4] Jiang, S.: Global solutions of the Neumann problem in one-dimensional thermoelasticity. Nonlinear Anal. 19, 107-121 (1992) · Zbl 0786.73009 · doi:10.1016/0362-546X(92)90114-T
[5] Huang, F.L.: Characteristic condition for exponential stability of linear dynamical systems in Hilbert spaces. Ann. Differ. Equ. 1, 43-56 (1985) · Zbl 0593.34048
[6] Lebeau, G., Zuazua, E.: Decay rates for the three-dimensional linear systems of thermoelasticity. Arch. Ration. Mech. Anal. 141, 297-329 (1999) · Zbl 0939.74016 · doi:10.1007/s002050050078
[7] Liu, Z., Zheng, S.: Semigroups Associated with Dissipative Systems. Chapman and Hall/CRC, Boca Raton (1999) · Zbl 0924.73003
[8] Liu, Z., Rao, B.: Characterization of polynomial decay rate for the solution of linear evolution equation. Z. Angew. Math. Phys. 56, 630-644 (2005) · Zbl 1100.47036 · doi:10.1007/s00033-004-3073-4
[9] Liu, Z., Rao, B.: Energy decay rate of the thermoelastic Bresse system. Z. Angew. Math. Phys. 60(1), 54-69 (2009) · Zbl 1161.74030 · doi:10.1007/s00033-008-6122-6
[10] Leseduarte, M.C., Magana, A., Quintanilla, R.: On the decay of solutions in porous-thermo-elasticity of type II. DCDS Ser. B 13(2), 375-391 (2015) · Zbl 1197.35053 · doi:10.3934/dcdsb.2010.13.375
[11] Magana, A., Quintanilla, R.: On the time decay of solutions in one-dimensional theories of porous materials. Int. J. Solids Struct. 43, 3414-3427 (2006) · Zbl 1121.74361 · doi:10.1016/j.ijsolstr.2005.06.077
[12] Messaoudi, S.A., Fareh, A.: General decay for a porous thermoelastic system with memory: the case of equal speeds. Nonlinear Anal TMA 74, 6895-6906 (2011) · Zbl 1228.35055 · doi:10.1016/j.na.2011.07.012
[13] Messaoudi, S.A., Fareh, A.: General decay for a porous thermoelastic system with memory: the case of nonequal speeds. Acta Math. Sci. 33, 23-40 (2013) · Zbl 1289.35215 · doi:10.1016/S0252-9602(12)60192-1
[14] Messaoudi, S.A., Fareh, A.: Exponential decay for linear damped porous thermoelastic systems with second sound. DCDS Ser. B 20(2), 599-612 (2015) · Zbl 1304.35676 · doi:10.3934/dcdsb.2015.20.599
[15] Munoz Rivera, J.E.: Energy decay rate in linear thermoelasticity. Funkc. Ekvacioj 35, 19-30 (1992) · Zbl 0838.73006
[16] Pamplona, P.X., Rivera, J.E.M., Quintanilla, R.: Stabilization in elastic solids with voids. J. Math. Anal. Appl. 1, 37-49 (2009) · Zbl 1153.74016 · doi:10.1016/j.jmaa.2008.09.026
[17] Pruss, J.: On the spectrum of \[C^{\text{0 }}0\] semigroups. Trans. Am. Math. Soc. 284, 847-857 (1984) · Zbl 0572.47030 · doi:10.2307/1999112
[18] Quintanilla, R.: Slow decay for one-dimensional porous dissipation elasticity. Appl. Math. Lett. 16, 487-491 (2003) · Zbl 1040.74023 · doi:10.1016/S0893-9659(03)00025-9
[19] Racke, R.: Thermoelasticity with second sound, exponential stability in linear and non-linear 1-d. Math. Methods Appl. Sci. 25, 409-441 (2002) · Zbl 1008.74027 · doi:10.1002/mma.298
[20] Slemrod, M.: Global existence, uniqueness and asymptotic stability of classical smooth solutions in one-dimensional nonlinear thermoelasticity. Arch. Ration. Mech. Anal. 76, 97-133 (1981) · Zbl 0481.73009 · doi:10.1007/BF00251248
[21] Soufyane, A.: Energy decay for porous-thermo-elasticity systems of memory type. Appl Anal 87(4), 451-464 (2008) · Zbl 1135.74301 · doi:10.1080/00036810802035634
[22] Zhang, X., Zuazua, E.: Decay of solutions of the system of thermoelasticity of type III. Commun. Contemp. Math. 5, 25-83 (2003) · Zbl 1136.74318 · doi:10.1142/S0219199703000896
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.