×

Derivation of an effective model for metabolic processes in living cells including substrate channeling. (English) Zbl 1371.35154

Summary: A system of reaction-diffusion equations in a multi-component medium with nonlinear flux-conditions and additional reaction-diffusion equations on the interfaces is considered. The model is motivated by metabolic processes in living cells. Especially, we are interested in modeling the central carbon metabolism in plant cells, with particular emphasis on metabolite channeling. The nonlinear reaction terms arising in the equations and boundary conditions are described by structural conditions, which are fulfilled by the kinetics of multi-species enzymatic reactions encountered in cellular metabolism. Starting from a mathematical model at subcellular level, where cellular structures like organelles are resolved, we derive an effective approximations for the cellular processes, by letting the scale parameter given by the ratio between the size of organelles and that of the cell going to zero. To show convergence of the nonlinear terms, we use homogenization concepts developed in [M. Gahn et al., SIAM J. Appl. Math. 76, No. 5, 1819–1843 (2016; Zbl 1355.35105)], based on estimates for the shifting operator for Banach-space-valued functions.

MSC:

35K57 Reaction-diffusion equations
35Q92 PDEs in connection with biology, chemistry and other natural sciences
80M35 Asymptotic analysis for problems in thermodynamics and heat transfer
80M40 Homogenization for problems in thermodynamics and heat transfer
35K61 Nonlinear initial, boundary and initial-boundary value problems for nonlinear parabolic equations

Citations:

Zbl 1355.35105
Full Text: DOI

References:

[1] Allaire, G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23, 1482-1518 (1992) · Zbl 0770.35005 · doi:10.1137/0523084
[2] Allaire, G., Damlamian, A., Hornung, U.: Two-scale convergence on periodic surfaces and applications. In: Bourgeat, A., et al. (eds.) Proceedings of the International Conference on Mathematical Modelling of Flow through Porous Media, pp 15-25. World Scientific, Singapore (1996)
[3] Alt, H. W.: Lineare Funktionalanalysis. Springer, Berlin-Heidelberg (2012) · Zbl 0577.46001 · doi:10.1007/978-3-642-22261-0
[4] Amann, H., Escher J.: Analysis III. Birkhäuser, Basel (2009) · Zbl 1187.28001 · doi:10.1007/978-3-7643-7480-8
[5] Amann, H., Escher J.: Analysis II. Birkhäuser, Basel (2008) · Zbl 1146.26001
[6] Arbogast, T., Douglas, J., Hornung, U.: Derivation of the double porosity model of single phase flow via homogenization theory. SIAM J. Math. Anal. 21, 823-836 (1990) · Zbl 0698.76106 · doi:10.1137/0521046
[7] Aubin, T.: Nonlinear Analysis on Manifolds. Monge-Ampére Equations, Springer, New York (1982) · Zbl 0512.53044
[8] Bourgeat, A., Luckhaus, S., Mikelić, A.: Convergence of the homogenization process for a double-porosity model of immiscible two-phase flow. SIAM J. Math. Anal. 27, 1520-1543 (1996) · Zbl 0866.35018 · doi:10.1137/S0036141094276457
[9] Cioranescu, D., Damlamian, A., Griso, G.: Periodic unfolding and homogenization. C. R. Acad. Sci. Paris Sér. 1 335, 99-104 (2002) · Zbl 1001.49016 · doi:10.1016/S1631-073X(02)02429-9
[10] Cioranescu, D., Damlamian, A., Griso, G.: The periodic unfolding method in homogenization. SIAM J. Math. Anal. 40, 1585-1620 (2008) · Zbl 1167.49013 · doi:10.1137/080713148
[11] Cioranescu, D., Donato, P., Zaki, R.: The periodic unfolding method in perforated domains. Port. Math. (N.S.) 63, 467-496 (2006) · Zbl 1119.49014
[12] Cioranescu, D., Paulin, J. S. J.: Homogenization in open sets with holes. J. Math. Anal. Appl. 71, 590-607 (1979) · Zbl 0427.35073 · doi:10.1016/0022-247X(79)90211-7
[13] Day, D., Millar, A. H., Whelan, J.: Plant Mitochondria: From Genome to Function. Advances in Photosynthesis and Respiration, vol. 17. Springer, Netherlands (2010) · Zbl 0698.76106
[14] DiBenedetto, E.: Degenerate Parabolic Equations. Springer-Verlag, New York (1993) · Zbl 0794.35090 · doi:10.1007/978-1-4612-0895-2
[15] Donato, P., Faella, L., Monsurrò, S.: Homogenization of the wave equation in composites with imperfect interface: A memory effect. J. Math. Pures Appl. 87, 119-143 (2007) · Zbl 1112.35017 · doi:10.1016/j.matpur.2006.11.004
[16] Donato, P., Monsurrò, S.: Homogenization of two heat conductors with an interfacial contact resistance. Anal. Appl. 2, 247-273 (2004) · Zbl 1083.35014 · doi:10.1142/S0219530504000345
[17] Donato, P., Le Nguyen, K. H.: Homogenization of diffusion problems with a nonlinear interfacial resistance. Nonlinear Differ. Equ. Appl. 22, 1345-1380 (2015) · Zbl 1339.35022 · doi:10.1007/s00030-015-0325-2
[18] Donato, P., Le Nguyen, K. H., Tardieu, R.: The periodic unfolding method for a class of imperfect transmission problems. J. Math. Sci. 176, 891-927 (2011) · Zbl 1290.35018 · doi:10.1007/s10958-011-0443-2
[19] Fawcett, D. W.: The Cell. W. B. Saunders Company, Philadelphia (1981)
[20] Flügge, U.-I.: Phosphate translocators in plastids. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 27-45 (1999) · doi:10.1146/annurev.arplant.50.1.27
[21] Gahn, M., Neuss-Radu, M., Knabner, P.: Homogenization of reaction-diffusion processes in a two-component porous medium with nonlinear flux conditions at the interface. SIAM J. Appl. Math. 76, 1819-1843 (2016) · Zbl 1355.35105 · doi:10.1137/15M1018484
[22] Goddard, D. R., Stafford, H. A.: Localization of enzymes in the cells of higher plants. Annu. Rev. Plant Physiol. 5, 115-132 (1954) · doi:10.1146/annurev.pp.05.060154.000555
[23] Graf, I., Peter, M. A.: A convergence result for the periodic unfolding method related to fast diffusion on manifolds. C. R. Acad. Sci. Paris, Ser. I 352, 485-490 (2014) · Zbl 1302.35038 · doi:10.1016/j.crma.2014.03.002
[24] Graf, I., Peter, M. A.: Diffusion on surfaces and the boundary periodic unfolding operator with an application to carcinogenesis in human cells. SIAM J. Math. Anal. 46, 3025-3049 (2014) · Zbl 1304.35062 · doi:10.1137/130921015
[25] Graf, I., Peter, M. A., Sneyd, J.: Homogenization of a Nonlinear multiscale model of calcium dynamics in biological cells. J. Math. Anal. Appl. 419, 28-47 (2014) · Zbl 1323.92070 · doi:10.1016/j.jmaa.2014.04.037
[26] Graham, J. W. A., Williams, T. C. R., Morgan, M., Fernie, A. R., Ratcliffe, R. G., Sweetlove, L. J.: Glycolytic enzymes associate dynamically with mitochondria in response to respiratory demand and support substrate channeling. Plant Cell 19, 3723-3738 (2007) · doi:10.1105/tpc.107.053371
[27] Hebey, E.: Sobolev Spaces on Riemannian Manifolds. Springer, Berlin-Heidelberg (1996) · Zbl 0866.58068 · doi:10.1007/BFb0092907
[28] Hornung, U., Jäger, W.: Diffusion, convection, adsorption, and reaction of chemicals in porous media. J. Differ. Equ. 92, 199-225 (1991) · Zbl 0731.76080 · doi:10.1016/0022-0396(91)90047-D
[29] Hornung, U., Jäger, W., Mikelić, A.: Reactive transport through an array of cells with semi-permeable Membranes. Math. Model. Numer. Anal. 28, 59-94 (1994) · Zbl 0824.76083
[30] Jäger, W., Mikelić, A., Neuss-Radu, M.: Homogenization limit of a model system for interaction of flow, chemical reactions, and mechanics in cell tissues. SIAM J. Math. Anal. 43, 1390-1435 (2011) · Zbl 1226.93016 · doi:10.1137/100808393
[31] Jensen, K. H., Zwieniecki, M. A.: Physical limits to leaf size in tall trees. Phys. Rev. Lett. 110, 018104 (2013) · doi:10.1103/PhysRevLett.110.018104
[32] Jose, E. C.: Homogenization of a parabolic problem with an imperfect interface. Rev. Roum. Math. Pures Appl. 54, 189-222 (2009) · Zbl 1199.35015
[33] Milo, R.: Cell Biology by the Numbers. Garland Science, New York (2015)
[34] Morgan, J. A., Rhodes, D.: Mathematical modeling of plant metabolic pathways. Metab. Eng. 4, 80-89 (2002) · doi:10.1006/mben.2001.0211
[35] Neuss-Radu, M.: Some extensions of two-scale convergence. C. R. Acad. Sci. Paris Sér. I Math. 322, 899-904 (1996) · Zbl 0852.76087
[36] Neuss-Radu, M., Jäger, W.: Effective transmission conditions for reaction-diffusion processes in domains separated by an interface. SIAM J. Math. Anal. 39, 687-720 (2007) · Zbl 1145.35017 · doi:10.1137/060665452
[37] Nguetseng, G.: A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20, 608-623 (1989) · Zbl 0688.35007 · doi:10.1137/0520043
[38] Ptashnyk, M., Roose, T.: Derivation of a macroscopic model for transport of strongly sorbed soutes in the soil using homogenization theory. SIAM J. Appl. Math. 70, 2097-2118 (2010) · Zbl 1230.35014 · doi:10.1137/080729591
[39] Rastogi, S. C.: Cell and Molecular Biology. New Age International Pvt. Ltd., New Delhi (2003)
[40] Rios-Estepa, R., Lange, B. M.: Experimental and mathematical approaches to modeling plant metabolic networks. Phytochemistry 68, 2351-2374 (2007) · doi:10.1016/j.phytochem.2007.04.021
[41] Rosenberg, S.: The Laplacian on a Riemannian Manifold. Cambridge University Press, Cambridge (1997) · Zbl 0868.58074 · doi:10.1017/CBO9780511623783
[42] Saks, V., Beraud, N., Wallimann, T.: Metabolic compartmentation—a system level property of muscle cells. Int. J. Mol. Sci. 9, 751-767 (2008) · doi:10.3390/ijms9050751
[43] Saks, V., Kuznetsov, A., Andrienko, T., Usson, Y., Appaix, F., Guerrero, K., Kaambre, T., Sikk, P., Lemba, M., Vendelin, M.: Heterogenity of ADP diffusion and regulation of respiration in cardiac cells. Biophys. J. 84, 3436-3456 (2003) · doi:10.1016/S0006-3495(03)70065-4
[44] Segel, I. H.: Enzyme Kinetics. Wiley, New Jersey (1975)
[45] Szecowka, M., Heise, R., Tohge, T., Nunes-Nesi, A., Vosloh, D., Huege, J., Feil, R., Lunn, J., Nikoloski, Z., Stitt, M., Fernie, A. R., Arrivault, S.: Metabolic fluxes in an illuminated Arabidopsis rosette. Plant Cell 25, 694-714 (2013) · doi:10.1105/tpc.112.106989
[46] Timofte, C.: Homogenization results for the calcium dynamics in living cells. Mathematics and Computers in Simulation. (in press) · Zbl 1540.92057
[47] Triebel, H.: Theory of Function Spaces II. Birkhäuser, Basel (1992) · Zbl 0763.46025 · doi:10.1007/978-3-0346-0419-2
[48] Vogt, C.: A homogenization theorem leading to a Volterra integro-differential equation for permeation chromotography. SFB 123, University of Heidelberg Preprint 155 and Diploma-thesis (1982)
[49] Williams, T. C. R., Sweetlove, L. J., Ratcliffe, R. G.: Capturing metabolite channeling in metabolic flux phenotypes. Plant Physiol. 157, 981-984 (2011) · doi:10.1104/pp.111.184887
[50] Winkel, B. S. J.: Metabolic channeling in plants. Annu. Rev. Plant Biol. 55, 85-107 (2004) · doi:10.1146/annurev.arplant.55.031903.141714
[51] Wloka, J.: Partielle Differentialgleichungen. B.G. Teubner, Stuttgart (1982) · Zbl 0482.35001 · doi:10.1007/978-3-322-96662-9
[52] Zeidler, E.: Nonlinear Functional Analysis and its Applications II/A. Springer, New York (1990) · Zbl 0684.47028 · doi:10.1007/978-1-4612-0985-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.