×

Solvable groups, free divisors and nonisolated matrix singularities. I: Towers of free divisors. (Groupes solvables, diviseurs libres et singularités des matrices nonisolées I : Tours des diviseurs libres.) (English. French summary) Zbl 1371.14056

Summary: We introduce a method for obtaining new classes of free divisors from representations \(V\) of connected linear algebraic groups \(G\) where \(\dim G = \dim V\), with \(V\) having an open orbit. We give sufficient conditions that the complement of this open orbit, the “exceptional orbit variety”, is a free divisor (or a slightly weaker free* divisor) for “block representations” of both solvable groups and extensions of reductive groups by them. These are representations for which the matrix defined from a basis of associated “representation vector fields” on \(V\) has block triangular form, with blocks satisfying certain nonsingularity conditions.{ } For towers of Lie groups and representations this yields a tower of free divisors, successively obtained by adjoining varieties of singular matrices. This applies to solvable groups which give classical Cholesky-type factorization, and a modified form of it, on spaces of \(m \times m\) symmetric, skew-symmetric or general matrices. For skew-symmetric matrices, it further extends to representations of nonlinear infinite dimensional solvable Lie algebras.
For Part II, see Geom. Topol. 18, No. 2, 911–962 (2014; Zbl 1301.32017).

MSC:

14L35 Classical groups (algebro-geometric aspects)
11S90 Prehomogeneous vector spaces
17B66 Lie algebras of vector fields and related (super) algebras
20G05 Representation theory for linear algebraic groups

Citations:

Zbl 1301.32017

References:

[1] Benner, Peter; Byers, Ralph; Fassbender, Heike; Mehrmann, Volker; Watkins, David, Cholesky-like factorizations of skew-symmetric matrices, Electron. Trans. Numer. Anal., 11, 85-93 (electronic) (2000) · Zbl 0963.65033
[2] Borel, Armand, Linear algebraic groups, 126 (1991) · Zbl 0726.20030 · doi:10.1007/978-1-4612-0941-6
[3] Bruce, J. W., On families of symmetric matrices, Mosc. Math. J., 3, 2, 335-360 (2003) · Zbl 1054.15012
[4] Bruce, J. W.; Tari, F., On families of square matrices, Proc. London Math. Soc. (3), 89, 3, 738-762 (2004) · Zbl 1070.58032 · doi:10.1112/S0024611504014911
[5] Buchsbaum, David A.; Eisenbud, David, Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension \(3\), Amer. J. Math., 99, 3, 447-485 (1977) · Zbl 0373.13006 · doi:10.2307/2373926
[6] Buchweitz, Ragnar-Olaf; Mond, David, Singularities and computer algebra, 324, 41-77 (2006) · Zbl 1101.14013 · doi:10.1017/CBO9780511526374.006
[7] Burch, Lindsay, On ideals of finite homological dimension in local rings, Proc. Cambridge Philos. Soc., 64, 941-948 (1968) · Zbl 0172.32302 · doi:10.1017/S0305004100043620
[8] Damon, James, Higher multiplicities and almost free divisors and complete intersections, Mem. Amer. Math. Soc., 123, 589 (1996) · Zbl 0867.32015 · doi:10.1090/memo/0589
[9] Damon, James, On the legacy of free divisors: discriminants and Morse-type singularities, Amer. J. Math., 120, 3, 453-492 (1998) · Zbl 0910.32038 · doi:10.1353/ajm.1998.0017
[10] Damon, James, On the legacy of free divisors. II. Free \({}^*\) divisors and complete intersections, Mosc. Math. J., 3, 2, 361-395 (2003) · Zbl 1040.32026
[11] Damon, James; Mond, David, \( \mathcal{A} \)-codimension and the vanishing topology of discriminants, Invent. Math., 106, 2, 217-242 (1991) · Zbl 0772.32023 · doi:10.1007/BF01243911
[12] Damon, James; Pike, Brian, Solvable group representations and free divisors whose complements are \(K(\pi ,1)\)’s, Topology Appl., 159, 2, 437-449 (2012) · Zbl 1257.55010 · doi:10.1016/j.topol.2011.09.018
[13] Damon, James; Pike, Brian, Solvable groups, free divisors and nonisolated matrix singularities II: vanishing topology, Geom. Topol., 18, 2, 911-962 (2014) · Zbl 1301.32017 · doi:10.2140/gt.2014.18.911
[14] Demmel, James W., Applied numerical linear algebra (1997) · Zbl 0879.65017 · doi:10.1137/1.9781611971446
[15] Dress, Andreas W. M.; Wenzel, Walter, A simple proof of an identity concerning Pfaffians of skew symmetric matrices, Adv. Math., 112, 1, 120-134 (1995) · Zbl 0822.15010 · doi:10.1006/aima.1995.1029
[16] Eagon, J. A.; Northcott, D. G., Ideals defined by matrices and a certain complex associated with them., Proc. Roy. Soc. Ser. A, 269, 188-204 (1962) · Zbl 0106.25603 · doi:10.1098/rspa.1962.0170
[17] Frühbis-Krüger, Anne, Classification of simple space curve singularities, Comm. Algebra, 27, 8, 3993-4013 (1999) · Zbl 0963.14011 · doi:10.1080/00927879908826678
[18] Frühbis-Krüger, Anne; Neumer, Alexander, Simple Cohen-Macaulay codimension 2 singularities, Comm. Algebra, 38, 2, 454-495 (2010) · Zbl 1193.32015 · doi:10.1080/00927870802606018
[19] Goryunov, V. V.; Zakalyukin, V. M., Simple symmetric matrix singularities and the subgroups of Weyl groups \(A_\mu , D_\mu , E_\mu \), Mosc. Math. J., 3, 2, 507-530 (2003) · Zbl 1040.58018
[20] Granger, Michel; Mond, David; Nieto-Reyes, Alicia; Schulze, Mathias, Linear free divisors and the global logarithmic comparison theorem, Ann. Inst. Fourier (Grenoble), 59, 2, 811-850 (2009) · Zbl 1163.32014 · doi:10.5802/aif.2448
[21] Granger, Michel; Mond, David; Schulze, Mathias, Free divisors in prehomogeneous vector spaces, Proc. Lond. Math. Soc. (3), 102, 5, 923-950 (2011) · Zbl 1231.14042 · doi:10.1112/plms/pdq046
[22] Greuel, Gert-Martin; Lê, Dung Tráng, Spitzen, Doppelpunkte und vertikale Tangenten in der Diskriminante verseller Deformationen von vollständigen Durchschnitten, Math. Ann., 222, 1, 71-88 (1976) · Zbl 0318.32015 · doi:10.1007/BF01418245
[23] Haslinger, G., Families of Skew-Symmetric Matrices (2001)
[24] Hilbert, David, Ueber die Theorie der algebraischen Formen, Math. Ann., 36, 4, 473-534 (1890) · JFM 22.0133.01 · doi:10.1007/BF01208503
[25] Kimura, Tatsuo, Introduction to prehomogeneous vector spaces, 215 (2003) · Zbl 1035.11060
[26] Macaulay, F. S., The algebraic theory of modular systems (1994) · Zbl 0802.13001
[27] Muir, Thomas, A treatise on the theory of determinants (1960)
[28] Pike, B., Singular Milnor numbers of non-isolated matrix singularities (2010)
[29] Saito, Kyoji, Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 27, 2, 265-291 (1980) · Zbl 0496.32007
[30] Sato, M.; Kimura, T., A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J., 65, 1-155 (1977) · Zbl 0321.14030
[31] Sato, Mikio, Theory of prehomogeneous vector spaces (algebraic part)—the English translation of Sato’s lecture from Shintani’s note, Nagoya Math. J., 120, 1-34 (1990) · Zbl 0715.22014
[32] Schaps, Mary, Deformations of Cohen-Macaulay schemes of codimension \(2\) and non-singular deformations of space curves, Amer. J. Math., 99, 4, 669-685 (1977) · Zbl 0358.14006 · doi:10.2307/2373859
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.