×

Problems and results on intersective sets. (English) Zbl 1371.11028

Nathanson, Melvyn B. (ed.), Combinatorial and additive number theory. Selected papers based on the presentations at the conferences CANT 2011 and 2012, New York, NY, USA, May 2011 and May 2012. New York, NY: Springer (ISBN 978-1-4939-1600-9/hbk; 978-1-4939-1601-6/ebook). Springer Proceedings in Mathematics & Statistics 101, 115-128 (2014).
Summary: By intersective set we mean a set \(H\subset\mathbb Z\) having the property that it intersects the difference set \(A - A\) of any dense subset \(A\) of the integers. By analogy between the integers and the ring of polynomials over a finite field, the notion of intersective sets also makes sense in the latter setting. We give a survey of methods used to study intersective sets, known results and open problems in both settings.
For the entire collection see [Zbl 1303.11007].

MSC:

11B30 Arithmetic combinatorics; higher degree uniformity
11P55 Applications of the Hardy-Littlewood method
37A45 Relations of ergodic theory with number theory and harmonic analysis (MSC2010)
Full Text: DOI

References:

[1] Balog, A.; Pelikán, J.; Pintz, J.; Szemerédi, E., Difference sets without κ-th powers, Acta Math. Hungar., 65, 165-187 (1994) · Zbl 0816.11014 · doi:10.1007/BF01874311
[2] Berend, D.; Bilu, Y., Polynomials with roots modulo every integer, Proc. Am. Math. Soc., 124, 6, 1663-1671 (1996) · Zbl 1055.11523 · doi:10.1090/S0002-9939-96-03210-8
[3] Bergelson, V., Sets of recurrence of Z^m-actions and properties of sets of differences in Z^m, J. Lond. Math. Soc., 31, 2, 295-304 (1985) · Zbl 0579.10029 · doi:10.1112/jlms/s2-31.2.295
[4] V. Bergelson, Combinatorial and Diophantine Applications of Ergodic Theory, ed. by B. Hasselblatt, A. Katok. Handbook of Dynamical Systems, vol. 1B, (Elsevier, Amsterdam, 2006), pp. 745-841 · Zbl 1130.37317
[5] Bergelson, V.; Håland, I. J.; Bergelson, V.; March, P.; Rosenblatt, J., Sets of recurrence and generalized polynomials, Convergence in Ergodic Theory and Probability, 91-110 (1996), Berlin, NewYork: Walter de Gruyter & Co, Berlin, NewYork · Zbl 0846.00030 · doi:10.1515/9783110889383
[6] Bergelson, V.; Leibman, A., Polynomial extensions of van der Waerden’s and Szemerédi’s theorems, J. Am. Math. Soc., 9, 3, 725-753 (1996) · Zbl 0870.11015 · doi:10.1090/S0894-0347-96-00194-4
[7] Bergelson, V.; Lesigne, E., Van der corput sets in Z^d, Colloq. Math., 110, 1, 1-49 (2008) · Zbl 1177.37018 · doi:10.4064/cm110-1-1
[8] Bergelson, V.; Leibman, A.; McCutcheon, R., Polynomial Szemerédi theorem for countable modules over integral domains and finite fields, J. Anal. Math., 95, 243-296 (2005) · Zbl 1087.11007 · doi:10.1007/BF02791504
[9] Bergelson, V.; Håland Knutson, I. J.; McCutcheon, R., IP Systems, generalized polynomials and recurrence, Ergodic Theory Dyn. Syst., 26, 999-1019 (2006) · Zbl 1107.37007 · doi:10.1017/S0143385706000010
[10] Bertrand-Mathis, A., Ensembles intersectifs et récurrence de Poincaré, Israel J. Math., 55, 184-198 (1986) · Zbl 0611.10032 · doi:10.1007/BF02801994
[11] Bourgain, J., Ruzsa’s problem on sets of recurrence, Israel J. Math., 59, 2, 150-166 (1987) · Zbl 0643.10045 · doi:10.1007/BF02787258
[12] Frantzkinakis, N.; Wierdl, M., A Hardy field extension of Szemerédi’s theorem, Adv. Math., 222, 1-43 (2009) · Zbl 1182.37007 · doi:10.1016/j.aim.2009.03.017
[13] Frantzikinakis, N., Multiple recurrence and convergence for Hardy field sequences of polynomial growth, J. Anal. Math., 112, 79-135 (2010) · Zbl 1211.37008 · doi:10.1007/s11854-010-0026-z
[14] Furstenberg, H., Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Anal. Math., 71, 204-256 (1977) · Zbl 0347.28016 · doi:10.1007/BF02813304
[15] Furstenberg, H., Recurrence in Ergodic Theory and Combinatorial Number Theory (1981), Princeton: Princeton University Press, Princeton · Zbl 0459.28023
[16] Furstenberg, H.; Katznelson, Y., A density version of the Hales-Jewett theorem, J. Anal. Math., 57, 64-119 (1991) · Zbl 0770.05097
[17] Green, B., On arithmetic structures in dense sets of integers, Duke Math. J., 114, 2, 215-238 (2002) · Zbl 1020.11010 · doi:10.1215/S0012-7094-02-11422-7
[18] Green, B., Roth’s theorem in the primes, Ann. Math., 161, 3, 1609-1636 (2005) · Zbl 1160.11307 · doi:10.4007/annals.2005.161.1609
[19] Green, B.; Tao, T., Restriction theory of the Selberg sieve, with applications, J. Theor. Nombres Bordeaux, 18, 147-182 (2006) · Zbl 1135.11049 · doi:10.5802/jtnb.538
[20] Green, B.; Tao, T., The primes contain arbitrarily long arithmetic progressions, Ann. Math., 167, 481-547 (2008) · Zbl 1191.11025 · doi:10.4007/annals.2008.167.481
[21] Kamae, T.; Mendès France, M., Van der Corput’s difference theorem, Israel J. Math., 31, 3-4, 335-342 (1978) · Zbl 0396.10040 · doi:10.1007/BF02761498
[22] I. Łaba, M. Hamel, Arithmetic structures in random sets. Integers Electron. J. Combin. Number Theory 8, #A4 (2008) · Zbl 1195.11037
[23] Lê, T. H., Intersective polynomials and the primes, J. Number Theory, 130, 8, 1705-1717 (2010) · Zbl 1197.11136 · doi:10.1016/j.jnt.2010.03.007
[24] T.H. Lê, Topics in arithmetic combinatorics in function fields. Ph.D. Thesis, UCLA (2010)
[25] Lê, T. H.; Liu, Y.-R., On sets of polynomials whose difference set contains no squares, Acta Arith., 161, 127-143 (2013) · Zbl 1294.11177 · doi:10.4064/aa161-2-2
[26] Lê, T. H.; Spencer, C. V., Difference sets and irreducible polynomials in function fields, B. Lond. Math. Soc., 43, 347-358 (2011) · Zbl 1214.11112 · doi:10.1112/blms/bdq106
[27] Li, H.; Pan, H., Difference sets and polynomials of prime variables, Acta Arithmatica, 138, 1, 25-52 (2009) · Zbl 1196.11137 · doi:10.4064/aa138-1-2
[28] Liu, Y.-R.; Wooley, T. D., Waring’s problem in function fields, J. Reine Angew. Math., 638, 1-67 (2010) · Zbl 1221.11203 · doi:10.1515/crelle.2010.001
[29] Lucier, J., Intersective sets given by a polynomial, Acta Arithmetica, 123, 57-95 (2006) · Zbl 1157.11039 · doi:10.4064/aa123-1-4
[30] Lucier, J., Difference sets and shifted primes, Acta Math. Hungar., 120, 1-2, 79-102 (2008) · Zbl 1164.11063 · doi:10.1007/s10474-007-7107-1
[31] Lyall, N., A simple proof of Sárközy’s theorem, Proc. Amer. Math. Soc., 141, 2253-2264 (2013) · Zbl 1276.11017 · doi:10.1090/S0002-9939-2013-11628-X
[32] H.L. Montgomery, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis. CBMS Regional Conference Series Mathematics, vol. 84 (American Mathematical Society, Providence, 1994) · Zbl 0814.11001
[33] Pintz, J.; Steiger, W. L.; Szemerédi, E., On sets of natural numbers whose difference set contains no squares, J. Lond. Math. Soc., 37, 2, 219-231 (1988) · Zbl 0651.10031 · doi:10.1112/jlms/s2-37.2.219
[34] D.H.J. Polymath, A new proof of the density Hales-Jewett theorem. Ann. of Math. (2) 175(3), 1283-1327 (2012) · Zbl 1267.11010
[35] G. Rhin, Répartition modulo 1 dans un corps de séries formelles sur un corps fini. Dissertationes Math. 95, 75 pp. (1972) · Zbl 0252.10036
[36] I. Ruzsa, Uniform distribution, positive trigonometric polynomials and difference sets, in Seminar on Number Theory, 1981/1982, Exp.No. 18 (University Bordeaux I, Talence, 1982), 18 pp. · Zbl 0515.10048
[37] Ruzsa, I., Difference sets without squares, Periodica Math. Hungar., 15, 205-209 (1984) · Zbl 0552.10035 · doi:10.1007/BF02454169
[38] Ruzsa, I., On measures of intersectivity, Acta Math. Hungar., 43, 3-4, 335-340 (1984) · Zbl 0534.10047 · doi:10.1007/BF01958030
[39] Ruzsa, I.; Sanders, T., Difference sets and the primes, Acta Arithmetica, 131, 281-301 (2008) · Zbl 1170.11023 · doi:10.4064/aa131-3-5
[40] Sárközy, A., On difference sets of sequences of integers, I.. Acta Math. Acad. Sci. Hungar., 31, 125-149 (1978) · Zbl 0387.10033 · doi:10.1007/BF01896079
[41] Sárközy, A., On difference sets of sequences of integers, III.. Acta Math. Acad. Sci. Hungar., 31, 355-386 (1978) · Zbl 0387.10034 · doi:10.1007/BF01901984
[42] Tao, T.; Ziegler, T., The primes contain arbitrarily long polynomial progressions, Acta Math., 201, 213-305 (2008) · Zbl 1230.11018 · doi:10.1007/s11511-008-0032-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.