×

Hierarchical stochastic gradient algorithm and its performance analysis for a class of bilinear-in-parameter systems. (English) Zbl 1370.93088

Summary: This paper considers the parameter identification for a special class of nonlinear systems, i.e., bilinear-in-parameter systems. Based on the hierarchical identification principle, a hierarchical stochastic gradient (HSG) estimation algorithm is presented. The basic idea is to decompose a bilinear-in-parameter system into two subsystems and to derive the HSG identification algorithm for estimating the system parameters by replacing the unknown variables in the information vectors with their estimates obtained at the previous time. The convergence analysis of the proposed algorithm indicates that the parameter estimation errors converge to zero under persistent excitation conditions. The simulation results show that the proposed algorithm is effective.

MSC:

93B30 System identification
93C05 Linear systems in control theory
93E10 Estimation and detection in stochastic control theory
Full Text: DOI

References:

[1] R. Abrahamssona, S.M. Kay, P. Stoica, Estimation of the parameters of a bilinear model with applications to submarine detection and system identification. Digit. Signal Process. 17(4), 756-773 (2007) · doi:10.1016/j.dsp.2006.04.005
[2] A. Atitallah, S. Bedoui, K. Abderrahim, Identification of wiener time delay systems based on hierarchical gradient approach. in The 8th Vienna International Conference on Mathematical Modelling—MATHMOD, IFAC-Papers OnLine48(1), 403-408 (2015) · Zbl 1485.93602
[3] E.W. Bai, An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems. Automatica 34(3), 333-338 (1998) · Zbl 0915.93018 · doi:10.1016/S0005-1098(97)00198-2
[4] E.W. Bai, A blind approach to the Hammerstein-Wiener model identification. Automatica 38(6), 967-979 (2002) · Zbl 1012.93018 · doi:10.1016/S0005-1098(01)00292-8
[5] E.W. Bai, Y. Liu, Least squares solutions of bilinear equations. Syst. Control Lett. 55(6), 466-472 (2006) · Zbl 1129.65310 · doi:10.1016/j.sysconle.2005.09.010
[6] X. Cao, D.Q. Zhu, S.X. Yang, Multi-AUV target search based on bioinspired neurodynamics model in 3-D underwater environments. IEEE Trans. Neural Netw. Learn. Syst. (2016). doi:10.1109/TNNLS.2015.2482501 · doi:10.1109/TNNLS.2015.2482501
[7] Z.Z. Chu, D.Q. Zhu, S.X. Yang, Observer-based adaptive neural network trajectory tracking control for remotely operated Vehicle. IEEE Trans. Neural Netw. Learn. Syst. (2016). doi:10.1109/TNNLS · doi:10.1109/TNNLS
[8] F. Ding, G.J. Liu, X.P. Liu, Parameter estimation with scarce measurements. Automatica 47(8), 1646-1655 (2011) · Zbl 1232.62043 · doi:10.1016/j.automatica.2011.05.007
[9] F. Ding, X.M. Liu, M.M. Liu, The recursive least squares identification algorithm for a class of Wiener nonlinear systems. J. Franklin Inst. 353(7), 1518-1526 (2016) · Zbl 1336.93144 · doi:10.1016/j.jfranklin.2016.02.013
[10] F. Ding, X.M. Liu, X.Y. Ma, Kalman state filtering based least squares iterative parameter estimation for observer canonical state space systems using decomposition. J. Comput. Appl. Math. 301, 135-143 (2016) · Zbl 1382.93032 · doi:10.1016/j.cam.2016.01.042
[11] F. Ding, X.H. Wang, Q.J. Chen, Y.S. Xiao, Recursive least squares parameter estimation for a class of output nonlinear systems based on the model decomposition. Circuits Syst. Signal Process. (2016). doi:10.1007/s00034-015-0190-6 · Zbl 1345.93169 · doi:10.1007/s00034-015-0190-6
[12] F. Ding, X.M. Liu, Y. Gu, An auxiliary model based least squares algorithm for a dual-rate state space system with time-delay using the data filtering. J. Franklin Inst. 353(2), 398-408 (2016) · Zbl 1395.93530 · doi:10.1016/j.jfranklin.2015.10.025
[13] F. Ding, Y. Gu, Performance analysis of the auxiliary model-based stochastic gradient parameter estimation algorithm for state-space systems with one-step state delay. Circuits Syst. Signal Process. 32(2), 585-599 (2013) · doi:10.1007/s00034-012-9463-5
[14] M. Gilson, P. Van den Hof, Instrumental variable methods for closed-loop system identification. Automatica 41(2), 241-249 (2005) · Zbl 1061.93030 · doi:10.1016/j.automatica.2004.09.016
[15] G.C. Goodwin, K.S. Sin, Adaptive Filtering Prediction and Control (Prentice-Hall, Englewood Cliffs, 1984) · Zbl 0653.93001
[16] A. Haryanto, K.S. Hong, Maximum likelihood identification of Wiener-Hammerstein models. Mech. Syst. Signal Process. 41(1-2), 54-70 (2013) · doi:10.1016/j.ymssp.2013.07.008
[17] Y. Ji, X.M. Liu, F. Ding, New criteria for the robust impulsive synchronization of uncertain chaotic delayed nonlinear systems. Nonlinear Dyn. 79(1), 1-9 (2015) · Zbl 1331.34108 · doi:10.1007/s11071-014-1640-6
[18] Y. Ji, X.M. Liu, Unified synchronization criteria for hybrid switching-impulsive dynamical networks. Circuits Syst. Signal Process. 34(5), 1499-1517 (2015) · Zbl 1341.93003 · doi:10.1007/s00034-014-9916-0
[19] H. Li, Y. Shi, W. Yan, On neighbor information utilization in distributed receding horizon control for consensus-seeking. IEEE Trans. Cybern. (2016). doi:10.1109/TCYB.2015.2459719 · doi:10.1109/TCYB.2015.2459719
[20] H. Li, Y. Shi, W. Yan, Distributed receding horizon control of constrained nonlinear vehicle formations with guaranteed \[\gamma\] γ-gain stability. Automatica 68, 148-154 (2016) · Zbl 1334.93010 · doi:10.1016/j.automatica.2016.01.057
[21] H. Li, Y. Shi, Robust H-infinity filtering for nonlinear stochastic systems with uncertainties and random delays modeled by Markov chains. Automatica 48(1), 159-166 (2012) · Zbl 1244.93158 · doi:10.1016/j.automatica.2011.09.045
[22] L. Ljung, System Identification: Theory for the User, 2nd edn. (Prentice Hall, Englewood Cliffs, 1999) · Zbl 0615.93004
[23] J. Pan, X.H. Yang, H.F. Cai, B.X. Mu, Image noise smoothing using a modified Kalman filter. Neurocomputing 173, 1625-1629 (2016) · doi:10.1016/j.neucom.2015.09.034
[24] J.D. Wang, Q.H. Zhang, L. Ljung, Revisiting Hammerstein system identification through the two-stage algorithm for bilinear parameter estimation. Automatica 45(11), 2627-2633 (2009) · Zbl 1180.93031 · doi:10.1016/j.automatica.2009.07.033
[25] D.Q. Wang, Hierarchical parameter estimation for a class of MIMO Hammerstein systems based on the reframed models. Appl. Math. Lett. 57, 13-19 (2016) · Zbl 1336.93155 · doi:10.1016/j.aml.2015.12.018
[26] X.H. Wang, F. Ding, F.E. Alsaadi, T. Hayat, Convergence analysis of the hierarchical least squares algorithm for bilinear-in-parameter systems. Circuits Syst. Signal Process. (2016). doi:10.1007/s00034-016-0278-7 · Zbl 1366.93685 · doi:10.1007/s00034-016-0278-7
[27] T.Z. Wang, J. Qi, H. Xu et al., Fault diagnosis method based on FFT-RPCA-SVM for cascaded-multilevel inverter. ISA Trans. 60, 156-163 (2016) · doi:10.1016/j.isatra.2015.11.018
[28] T.Z. Wang, H. Wu, M.Q. Ni et al., An adaptive confidence limit for periodic non-steady conditions fault detection. Mech. Syst. Signal Process. 72-73, 328-345 (2016) · doi:10.1016/j.ymssp.2015.10.015
[29] X.H. Wang, F. Ding, Recursive parameter and state estimation for an input nonlinear state space system using the hierarchical identification principle. Signal Process. 117, 208-218 (2015) · doi:10.1016/j.sigpro.2015.05.010
[30] D.Q. Wang, F. Ding, Parameter estimation algorithms for multivariable Hammerstein CARMA systems. Inf. Sci. 355, 237-248 (2016) · Zbl 1458.93130 · doi:10.1016/j.ins.2016.03.037
[31] Y.J. Wang, F. Ding, Recursive least squares algorithm and gradient algorithm for Hammerstein-Wiener systems using the data filtering. Nonlinear Dyn. 84(2), 1045-1053 (2016) · Zbl 1354.93158 · doi:10.1007/s11071-015-2548-5
[32] Y.J. Wang, F. Ding, Novel data filtering based parameter identification for multiple-input multiple-output systems using the auxiliary model. Automatica 71, 308-313 (2016) · Zbl 1343.93087 · doi:10.1016/j.automatica.2016.05.024
[33] Y.J. Wang, F. Ding, The filtering based iterative identification for multivariable systems. IET Control Theory Appl. 10(8), 894-902 (2016) · doi:10.1049/iet-cta.2015.1195
[34] Y.J. Wang, F. Ding, The auxiliary model based hierarchical gradient algorithms and convergence analysis using the filtering technique. Signal Process. 128, 212-221 (2016) · doi:10.1016/j.sigpro.2016.03.027
[35] X.H. Wang, F. Ding, Modelling and multi-innovation parameter identification for Hammerstein nonlinear state space systems using the filtering technique. Math. Comput. Modell. Dyn. Syst. 22(2), 113-140 (2016) · Zbl 1339.93106 · doi:10.1080/13873954.2016.1142455
[36] C. Wang, T. Tang, Recursive least squares estimation algorithm applied to a class of linear-in-parameters output error moving average systems. Appl. Math. Lett. 29, 36-41 (2014) · Zbl 1311.93082 · doi:10.1016/j.aml.2013.10.011
[37] C. Wang, T. Tang, Several gradient-based iterative estimation algorithms for a class of nonlinear systems using the filtering technique. Nonlinear Dyn. 77(3), 769-780 (2014) · Zbl 1314.93013 · doi:10.1007/s11071-014-1338-9
[38] D.Q. Wang, W. Zhang, Improved least squares identification algorithm for multivariable Hammerstein systems. J. Franklin Inst. 352(11), 5292-5370 (2015) · Zbl 1395.93287 · doi:10.1016/j.jfranklin.2015.09.007
[39] C. Wang, L. Zhu, Parameter identification of a class of nonlinear systems based on the multi-innovation identification theory. J. Franklin Inst. 352(10), 4624-4637 (2015) · Zbl 1395.93261 · doi:10.1016/j.jfranklin.2015.07.003
[40] A. Wills, T.B. Schön, L. Ljung et al., Identification of Hammerstein-Wiener models. Automatica 49(1), 70-81 (2013) · Zbl 1257.93109 · doi:10.1016/j.automatica.2012.09.018
[41] W.L. Xiong, J.X. Ma, R.F. Ding, An iterative numerical algorithm for modeling a class of Wiener nonlinear systems. Appl. Math. Lett. 26(4), 487-493 (2013) · Zbl 1261.65068 · doi:10.1016/j.aml.2012.12.001
[42] X.P. Xu, F. Wang, G.J. Liu, Identification of Hammerstein systems using key-term separation principle, auxiliary model and improved particle swarm optimisation algorithm. IET Signal Process. 7(8), 766-773 (2013) · doi:10.1049/iet-spr.2013.0042
[43] L. Xu, A proportional differential control method for a time-delay system using the Taylor expansion approximation. Appl. Math. Comput. 236, 391-399 (2014) · Zbl 1334.93125
[44] L. Xu, Application of the Newton iteration algorithm to the parameter estimation for dynamical systems. J. Comput. Appl. Math. 288, 33-43 (2015) · Zbl 1314.93062 · doi:10.1016/j.cam.2015.03.057
[45] L. Xu, L. Chen, W.L. Xiong, Parameter estimation and controller design for dynamic systems from the step responses based on the Newton iteration. Nonlinear Dyn. 79(3), 2155-2163 (2015) · doi:10.1007/s11071-014-1801-7
[46] L. Xu, The damping iterative parameter identification method for dynamical systems based on the sine signal measurement. Signal Process. 120, 660-667 (2016) · doi:10.1016/j.sigpro.2015.10.009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.